Circulant almost cross intersecting families

Michal Parnas
{"title":"Circulant almost cross intersecting families","authors":"Michal Parnas","doi":"10.26493/2590-9770.1414.F67","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{F}$ and $\\mathcal{G}$ be two $t$-uniform families of subsets over $[k] = \\{1,2,...,k\\}$, where $|\\mathcal{F}| = |\\mathcal{G}|$, and let $C$ be the adjacency matrix of the bipartite graph whose vertices are the subsets in $\\mathcal{F}$ and $\\mathcal{G}$, and there is an edge between $A\\in \\mathcal{F}$ and $B \\in \\mathcal{G}$ if and only if $A \\cap B \\neq \\emptyset$. The pair $(\\mathcal{F},\\mathcal{G})$ is $q$-almost cross intersecting if every row and column of $C$ has exactly $q$ zeros. \nWe consider $q$-almost cross intersecting pairs that have a circulant intersection matrix $C_{p,q}$, determined by a column vector with $p > 0$ ones followed by $q > 0$ zeros. This family of matrices includes the identity matrix in one extreme, and the adjacency matrix of the bipartite crown graph in the other extreme. \nWe give constructions of pairs $(\\mathcal{F},\\mathcal{G})$ whose intersection matrix is $C_{p,q}$, for a wide range of values of the parameters $p$ and $q$, and in some cases also prove matching upper bounds. Specifically, we prove results for the following values of the parameters: (1) $1 \\leq p \\leq 2t-1$ and $1 \\leq q \\leq k-2t+1$. (2) $2t \\leq p \\leq t^2$ and any $q> 0$, where $k \\geq p+q$. (3) $p$ that is exponential in $t$, for large enough $k$. \nUsing the first result we show that if $k \\geq 4t-3$ then $C_{2t-1,k-2t+1}$ is a maximal isolation submatrix of size $k\\times k$ in the $0,1$-matrix $A_{k,t}$, whose rows and columns are labeled by all subsets of size $t$ of $[k]$, and there is a one in the entry on row $x$ and column $y$ if and only if subsets $x,y$ intersect.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1414.F67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{F}$ and $\mathcal{G}$ be two $t$-uniform families of subsets over $[k] = \{1,2,...,k\}$, where $|\mathcal{F}| = |\mathcal{G}|$, and let $C$ be the adjacency matrix of the bipartite graph whose vertices are the subsets in $\mathcal{F}$ and $\mathcal{G}$, and there is an edge between $A\in \mathcal{F}$ and $B \in \mathcal{G}$ if and only if $A \cap B \neq \emptyset$. The pair $(\mathcal{F},\mathcal{G})$ is $q$-almost cross intersecting if every row and column of $C$ has exactly $q$ zeros. We consider $q$-almost cross intersecting pairs that have a circulant intersection matrix $C_{p,q}$, determined by a column vector with $p > 0$ ones followed by $q > 0$ zeros. This family of matrices includes the identity matrix in one extreme, and the adjacency matrix of the bipartite crown graph in the other extreme. We give constructions of pairs $(\mathcal{F},\mathcal{G})$ whose intersection matrix is $C_{p,q}$, for a wide range of values of the parameters $p$ and $q$, and in some cases also prove matching upper bounds. Specifically, we prove results for the following values of the parameters: (1) $1 \leq p \leq 2t-1$ and $1 \leq q \leq k-2t+1$. (2) $2t \leq p \leq t^2$ and any $q> 0$, where $k \geq p+q$. (3) $p$ that is exponential in $t$, for large enough $k$. Using the first result we show that if $k \geq 4t-3$ then $C_{2t-1,k-2t+1}$ is a maximal isolation submatrix of size $k\times k$ in the $0,1$-matrix $A_{k,t}$, whose rows and columns are labeled by all subsets of size $t$ of $[k]$, and there is a one in the entry on row $x$ and column $y$ if and only if subsets $x,y$ intersect.
循环的几乎交叉交叉的家族
让 $\mathcal{F}$ 和 $\mathcal{G}$ 两岁 $t$-子集的一致族 $[k] = \{1,2,...,k\}$,其中 $|\mathcal{F}| = |\mathcal{G}|$,让 $C$ 为顶点为中的子集的二部图的邻接矩阵 $\mathcal{F}$ 和 $\mathcal{G}$,两者之间有一个边缘 $A\in \mathcal{F}$ 和 $B \in \mathcal{G}$ 当且仅当 $A \cap B \neq \emptyset$. 这一对 $(\mathcal{F},\mathcal{G})$ 是 $q$-几乎交叉相交,如果每一行和每一列 $C$ 确切地说 $q$ 零。我们认为 $q$-几乎交叉相交的对,它们有一个循环相交矩阵 $C_{p,q}$,由列向量确定 $p > 0$ 后面跟着 $q > 0$ 零。这个矩阵族的一个极端是单位矩阵,另一个极端是二部冠图的邻接矩阵。我们给出对的结构 $(\mathcal{F},\mathcal{G})$ 它的交矩阵为 $C_{p,q}$,以获得广泛的参数值 $p$ 和 $q$,在某些情况下也证明了匹配上界。具体而言,我们证明了以下参数值的结果:(1) $1 \leq p \leq 2t-1$ 和 $1 \leq q \leq k-2t+1$. (2) $2t \leq p \leq t^2$ 任何 $q> 0$,其中 $k \geq p+q$. (3) $p$ 这是指数 $t$,表示足够大 $k$. 使用第一个结果,我们表明如果 $k \geq 4t-3$ 然后 $C_{2t-1,k-2t+1}$ 最大隔离子矩阵是否有大小 $k\times k$ 在 $0,1$-矩阵 $A_{k,t}$,其行和列由大小的所有子集标记 $t$ 的 $[k]$,在第一行的条目中有一个1 $x$ 还有列 $y$ 当且仅当子集 $x,y$ 相交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信