M. Barci, G. Molas, A. Toffoli, M. Bernard, A. Roule, C. Cagli, J. Cluzel, E. Vianello, B. De Salvo, L. Perniola
{"title":"Bilayer Metal-Oxide CBRAM Technology for Improved Window Margin and Reliability","authors":"M. Barci, G. Molas, A. Toffoli, M. Bernard, A. Roule, C. Cagli, J. Cluzel, E. Vianello, B. De Salvo, L. Perniola","doi":"10.1109/IMW.2015.7150278","DOIUrl":null,"url":null,"abstract":"In this paper, a detailed reliability analysis of metal-oxide CBRAM devices is presented. We demonstrated that the addition of a thin metal-oxide layer in the bottom of the memory stack significantly increases the ROFF and the memory window (more than 1 decade), with improved endurance performance. At the same time, high thermal stability was also achieved (window margin constant during more than 24 hours at 250°C). The origin of the window margin degradation during endurance is discussed and interpreted by means of a Trap Assisted Tunneling Model, putting in evidence the role of defect generation and Cu residual atoms in the resistive layer.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"57 6 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, a detailed reliability analysis of metal-oxide CBRAM devices is presented. We demonstrated that the addition of a thin metal-oxide layer in the bottom of the memory stack significantly increases the ROFF and the memory window (more than 1 decade), with improved endurance performance. At the same time, high thermal stability was also achieved (window margin constant during more than 24 hours at 250°C). The origin of the window margin degradation during endurance is discussed and interpreted by means of a Trap Assisted Tunneling Model, putting in evidence the role of defect generation and Cu residual atoms in the resistive layer.