Generative-Discriminative Crop Type Identification using Satellite Images

Nan Qiao, Yi-Jie Zhao, Ruei-Sung Lin, Bo Gong, Zhongxiang Wu, Mei Han, Jiashu Liu
{"title":"Generative-Discriminative Crop Type Identification using Satellite Images","authors":"Nan Qiao, Yi-Jie Zhao, Ruei-Sung Lin, Bo Gong, Zhongxiang Wu, Mei Han, Jiashu Liu","doi":"10.1109/GlobalSIP45357.2019.8969151","DOIUrl":null,"url":null,"abstract":"Crop type identification refers to distinguishing certain crop from other landcovers, which is an essential and crucial task in agricultural monitoring. Satellite images is good data input for identifying different crops since satellites capture relatively wider area and more spectral information. Based on prior knowledge of crop’s phenology, multi-temporal images are stacked to extract growth pattern of varied crops. In this paper, we proposed a machine learning model which combines generative and discriminative models and achieved averaged AP score of 0.903 over all tested crops and regions under the limitation of small dataset and label noise using satellite images taken at different times.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Crop type identification refers to distinguishing certain crop from other landcovers, which is an essential and crucial task in agricultural monitoring. Satellite images is good data input for identifying different crops since satellites capture relatively wider area and more spectral information. Based on prior knowledge of crop’s phenology, multi-temporal images are stacked to extract growth pattern of varied crops. In this paper, we proposed a machine learning model which combines generative and discriminative models and achieved averaged AP score of 0.903 over all tested crops and regions under the limitation of small dataset and label noise using satellite images taken at different times.
利用卫星图像进行作物类型的生成判别
作物类型识别是指将某些作物与其他土地覆盖区分开来,是农业监测中必不可少的关键任务。卫星图像是识别不同作物的良好数据输入,因为卫星捕获的区域相对较宽,光谱信息较多。基于对作物物候特征的先验知识,对多时段图像进行叠加,提取不同作物的生长模式。本文提出了一种结合生成模型和判别模型的机器学习模型,利用不同时间拍摄的卫星图像,在数据集较小和标签噪声的限制下,对所有被测试作物和地区的平均AP得分达到0.903。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信