On the Dynamics and Optimal Control of Constrained Mechanical Systems

S. Schneider, P. Betsch
{"title":"On the Dynamics and Optimal Control of Constrained Mechanical Systems","authors":"S. Schneider, P. Betsch","doi":"10.3311/eccomasmbd2021-130","DOIUrl":null,"url":null,"abstract":"The focus of this work is on optimal control in redundant coordinates with a special attention to the boundary constraints that arise in this context. Due to the similarity of the optimization problem of optimal control to the Lagrangian formalism of classical mechanics, this is considered first. Once the mechanical problem of the boundary conditions in redundant coordinates has been discussed, the knowledge gained is transferred to the optimal control problem in order to solve the problem in redundant coordinates. Finally, for each section the equivalence of the problem in minimal coordinates and redundant coordinates is shown by numerical results.","PeriodicalId":431921,"journal":{"name":"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/eccomasmbd2021-130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The focus of this work is on optimal control in redundant coordinates with a special attention to the boundary constraints that arise in this context. Due to the similarity of the optimization problem of optimal control to the Lagrangian formalism of classical mechanics, this is considered first. Once the mechanical problem of the boundary conditions in redundant coordinates has been discussed, the knowledge gained is transferred to the optimal control problem in order to solve the problem in redundant coordinates. Finally, for each section the equivalence of the problem in minimal coordinates and redundant coordinates is shown by numerical results.
约束机械系统动力学与最优控制研究
这项工作的重点是在冗余坐标的最优控制,特别注意在这种情况下出现的边界约束。由于最优控制的优化问题与经典力学的拉格朗日形式的相似性,这是首先考虑的问题。一旦讨论了冗余坐标下边界条件的力学问题,就可以将所获得的知识转化为最优控制问题,从而解决冗余坐标下的问题。最后,通过数值结果证明了各部分问题在极小坐标和冗余坐标下的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信