Iterative Blind Deconvolution Algorithm for Support Domain Based on Information Entropy

Zhu Shi-qing, Yang Ling, Cong Wen-sheng, Yang Rong, Hua Jun
{"title":"Iterative Blind Deconvolution Algorithm for Support Domain Based on Information Entropy","authors":"Zhu Shi-qing, Yang Ling, Cong Wen-sheng, Yang Rong, Hua Jun","doi":"10.1145/3320154.3322131","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of deconvolution which is easy to appear in traditional iterative blind deconvolution algorithm, an improved iterative blind deconvolution algorithm is proposed. The information entropy algorithm is used to calculate the limited support domain of the image, and the iterative replacement of the space and the frequency domain is performed in the support domain, thereby effectively solving the fuzzy problem. The simulation results show that compared with the original iterative blind deconvolution algorithm, the image has higher peak signal-to-noise ratio (SNR), faster convergence and better recovery.","PeriodicalId":227520,"journal":{"name":"Proceedings of the 2019 International Conference on Blockchain Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Blockchain Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320154.3322131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of deconvolution which is easy to appear in traditional iterative blind deconvolution algorithm, an improved iterative blind deconvolution algorithm is proposed. The information entropy algorithm is used to calculate the limited support domain of the image, and the iterative replacement of the space and the frequency domain is performed in the support domain, thereby effectively solving the fuzzy problem. The simulation results show that compared with the original iterative blind deconvolution algorithm, the image has higher peak signal-to-noise ratio (SNR), faster convergence and better recovery.
基于信息熵的支持域迭代盲反卷积算法
针对传统迭代盲反卷积算法容易出现的反卷积问题,提出了一种改进的迭代盲反卷积算法。利用信息熵算法计算图像的有限支持域,并在支持域中对空间域和频域进行迭代替换,从而有效地解决了模糊问题。仿真结果表明,与原始迭代盲反卷积算法相比,图像峰值信噪比更高,收敛速度更快,恢复效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信