Correspondence between variational methods and Hidden Markov Models

J. Ziehn, M. Ruf, B. Rosenhahn, D. Willersinn, J. Beyerer, H. Gotzig
{"title":"Correspondence between variational methods and Hidden Markov Models","authors":"J. Ziehn, M. Ruf, B. Rosenhahn, D. Willersinn, J. Beyerer, H. Gotzig","doi":"10.1109/IVS.2015.7225715","DOIUrl":null,"url":null,"abstract":"This paper establishes a duality between the calculus of variations, an increasingly common method for trajectory planning, and Hidden Markov Models (HMMs), a common probabilistic graphical model with applications in artificial intelligence and machine learning. This duality allows findings from each field to be applied to the other, namely providing an efficient and robust global optimization tool and machine learning algorithms for variational problems, and fast local solution methods for large state-space HMMs.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper establishes a duality between the calculus of variations, an increasingly common method for trajectory planning, and Hidden Markov Models (HMMs), a common probabilistic graphical model with applications in artificial intelligence and machine learning. This duality allows findings from each field to be applied to the other, namely providing an efficient and robust global optimization tool and machine learning algorithms for variational problems, and fast local solution methods for large state-space HMMs.
变分方法与隐马尔可夫模型的对应关系
本文建立了变分法和隐马尔可夫模型之间的对偶关系,隐马尔可夫模型是一种越来越常用的轨迹规划方法,隐马尔可夫模型是一种在人工智能和机器学习中应用的常见概率图形模型。这种对偶性允许每个领域的发现应用于另一个领域,即为变分问题提供高效和鲁棒的全局优化工具和机器学习算法,为大型状态空间hmm提供快速局部解决方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信