Label-Attentive Hierarchical Network for Document Classification

Xi Chen, Chongwu Dong, Jinghui Qin, Long Yin, Wushao Wen
{"title":"Label-Attentive Hierarchical Network for Document Classification","authors":"Xi Chen, Chongwu Dong, Jinghui Qin, Long Yin, Wushao Wen","doi":"10.1145/3446132.3446163","DOIUrl":null,"url":null,"abstract":"Text classification is one of the most fundamental and important tasks in the field of natural language processing, which aims to identify the most relevant label for a given piece of text. Although deep learning-based text classification methods have achieved promising results, most researches mainly focus on the internal context information of the document, ignoring the available global information such as document hierarchy and label semantics. To address this problem, we propose a novel Label-Attentive Hierarchical Network (LAHN) for document classification. In particular, we integrate label information into the hierarchical structure of the document by calculating the word-label attention at word level and the sentence-label attention at sentence level respectively. We give full consideration to the global information during encoding the whole document, which makes the final document representation vector more discriminative for classification. Extensive experiments on several benchmark datasets show that our proposed LAHN surpasses several state-of-the-art methods.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text classification is one of the most fundamental and important tasks in the field of natural language processing, which aims to identify the most relevant label for a given piece of text. Although deep learning-based text classification methods have achieved promising results, most researches mainly focus on the internal context information of the document, ignoring the available global information such as document hierarchy and label semantics. To address this problem, we propose a novel Label-Attentive Hierarchical Network (LAHN) for document classification. In particular, we integrate label information into the hierarchical structure of the document by calculating the word-label attention at word level and the sentence-label attention at sentence level respectively. We give full consideration to the global information during encoding the whole document, which makes the final document representation vector more discriminative for classification. Extensive experiments on several benchmark datasets show that our proposed LAHN surpasses several state-of-the-art methods.
用于文档分类的标签关注层次网络
文本分类是自然语言处理领域中最基本、最重要的任务之一,其目的是为给定的文本片段识别出最相关的标签。尽管基于深度学习的文本分类方法已经取得了可喜的成果,但大多数研究主要集中在文档的内部上下文信息上,忽略了文档层次结构和标签语义等可用的全局信息。为了解决这个问题,我们提出了一种新的标签关注层次网络(LAHN)用于文档分类。特别地,我们通过分别计算词级的词标签注意和句子级的句子标签注意,将标签信息整合到文档的层次结构中。我们在对整个文档进行编码时充分考虑了全局信息,使得最终的文档表示向量对分类更具有判别性。在几个基准数据集上进行的大量实验表明,我们提出的LAHN优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信