Sentiment Prediction using Attention on User-Specific Rating Distribution

Ting Lin, Aixin Sun
{"title":"Sentiment Prediction using Attention on User-Specific Rating Distribution","authors":"Ting Lin, Aixin Sun","doi":"10.1145/3409256.3409826","DOIUrl":null,"url":null,"abstract":"For document-level sentiment prediction, many methods try to first capture opinion words then infer sentiments based on these words. We observe that different users may use same words to express different levels of satisfaction, e.g., 'great' may mean very satisfaction to some users, or simply a general description to others. Intuitively, we expect the choice of a sentiment expression follows a distribution specific to a user and her sentiment to a product. In this paper, we propose a hierarchical neural network model with user-specific rating distribution attention (H-URA) to learn document representation for sentiment prediction. Our model learns local sentiment distributions from a user's expression, at word-level and at sentence-level respectively. We also learn a global sentiment distribution by using both user and product information. The attention weight is then computed from the local and global sentiment distributions. Experimental results show superiority of our H-URA model compared to strong baselines on benchmark datasets.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For document-level sentiment prediction, many methods try to first capture opinion words then infer sentiments based on these words. We observe that different users may use same words to express different levels of satisfaction, e.g., 'great' may mean very satisfaction to some users, or simply a general description to others. Intuitively, we expect the choice of a sentiment expression follows a distribution specific to a user and her sentiment to a product. In this paper, we propose a hierarchical neural network model with user-specific rating distribution attention (H-URA) to learn document representation for sentiment prediction. Our model learns local sentiment distributions from a user's expression, at word-level and at sentence-level respectively. We also learn a global sentiment distribution by using both user and product information. The attention weight is then computed from the local and global sentiment distributions. Experimental results show superiority of our H-URA model compared to strong baselines on benchmark datasets.
基于用户特定评级分布的注意力情感预测
对于文档级情感预测,许多方法尝试首先捕获意见词,然后根据这些词推断情绪。我们观察到,不同的用户可能会使用相同的单词来表达不同的满意程度,例如,“great”可能对某些用户意味着非常满意,而对另一些用户则只是一个笼统的描述。直观地,我们期望情感表达的选择遵循特定于用户和她对产品的情感的分布。在本文中,我们提出了一种具有用户特定评级分布注意力(H-URA)的层次神经网络模型来学习用于情感预测的文档表示。我们的模型分别在单词级和句子级从用户的表达中学习局部情绪分布。我们还通过使用用户和产品信息来学习全球情绪分布。然后根据本地和全球情绪分布计算注意力权重。实验结果表明,与基准数据集上的强基线相比,H-URA模型具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信