{"title":"3DPoseLite: A Compact 3D Pose Estimation Using Node Embeddings","authors":"Meghal Dani, Karan Narain, R. Hebbalaguppe","doi":"10.1109/WACV48630.2021.00192","DOIUrl":null,"url":null,"abstract":"Efficient pose estimation finds utility in Augmented Reality (AR) and other computer vision applications such as autonomous navigation and robotics, to name a few. A compact and accurate pose estimation methodology is of paramount importance for on-device inference in such applications. Our proposed solution 3DPoseLite, estimates pose of generic objects by utilizing a compact node embedding representation, unlike computationally expensive multi-view and point-cloud representations. The neural network outputs a 3D pose, taking RGB image and its corresponding graph (obtained by skeletonizing the 3D meshes [31]) as inputs. Our approach utilizes node2vec framework to learn low-dimensional representations for nodes in a graph by optimizing a neighborhood preserving objective. We achieve a space and time reduction by a factor of 11 × and 3 × respectively, with respect to the state-of-the-art approach, Pose-FromShape [50], on benchmark Pascal3D dataset [48]. We also test the performance of our model on unseen data using Pix3D dataset.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Efficient pose estimation finds utility in Augmented Reality (AR) and other computer vision applications such as autonomous navigation and robotics, to name a few. A compact and accurate pose estimation methodology is of paramount importance for on-device inference in such applications. Our proposed solution 3DPoseLite, estimates pose of generic objects by utilizing a compact node embedding representation, unlike computationally expensive multi-view and point-cloud representations. The neural network outputs a 3D pose, taking RGB image and its corresponding graph (obtained by skeletonizing the 3D meshes [31]) as inputs. Our approach utilizes node2vec framework to learn low-dimensional representations for nodes in a graph by optimizing a neighborhood preserving objective. We achieve a space and time reduction by a factor of 11 × and 3 × respectively, with respect to the state-of-the-art approach, Pose-FromShape [50], on benchmark Pascal3D dataset [48]. We also test the performance of our model on unseen data using Pix3D dataset.