3DPoseLite: A Compact 3D Pose Estimation Using Node Embeddings

Meghal Dani, Karan Narain, R. Hebbalaguppe
{"title":"3DPoseLite: A Compact 3D Pose Estimation Using Node Embeddings","authors":"Meghal Dani, Karan Narain, R. Hebbalaguppe","doi":"10.1109/WACV48630.2021.00192","DOIUrl":null,"url":null,"abstract":"Efficient pose estimation finds utility in Augmented Reality (AR) and other computer vision applications such as autonomous navigation and robotics, to name a few. A compact and accurate pose estimation methodology is of paramount importance for on-device inference in such applications. Our proposed solution 3DPoseLite, estimates pose of generic objects by utilizing a compact node embedding representation, unlike computationally expensive multi-view and point-cloud representations. The neural network outputs a 3D pose, taking RGB image and its corresponding graph (obtained by skeletonizing the 3D meshes [31]) as inputs. Our approach utilizes node2vec framework to learn low-dimensional representations for nodes in a graph by optimizing a neighborhood preserving objective. We achieve a space and time reduction by a factor of 11 × and 3 × respectively, with respect to the state-of-the-art approach, Pose-FromShape [50], on benchmark Pascal3D dataset [48]. We also test the performance of our model on unseen data using Pix3D dataset.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Efficient pose estimation finds utility in Augmented Reality (AR) and other computer vision applications such as autonomous navigation and robotics, to name a few. A compact and accurate pose estimation methodology is of paramount importance for on-device inference in such applications. Our proposed solution 3DPoseLite, estimates pose of generic objects by utilizing a compact node embedding representation, unlike computationally expensive multi-view and point-cloud representations. The neural network outputs a 3D pose, taking RGB image and its corresponding graph (obtained by skeletonizing the 3D meshes [31]) as inputs. Our approach utilizes node2vec framework to learn low-dimensional representations for nodes in a graph by optimizing a neighborhood preserving objective. We achieve a space and time reduction by a factor of 11 × and 3 × respectively, with respect to the state-of-the-art approach, Pose-FromShape [50], on benchmark Pascal3D dataset [48]. We also test the performance of our model on unseen data using Pix3D dataset.
3DPoseLite:使用节点嵌入的紧凑3D姿态估计
有效的姿态估计在增强现实(AR)和其他计算机视觉应用(如自主导航和机器人)中都很有用,仅举几例。紧凑而准确的姿态估计方法对于此类应用中的设备推理至关重要。我们提出的解决方案3DPoseLite,通过利用紧凑的节点嵌入表示来估计通用对象的姿态,不像计算昂贵的多视图和点云表示。神经网络以RGB图像及其对应的图形(通过对3D网格[31]进行骨架化得到)作为输入,输出一个3D姿态。我们的方法利用node2vec框架通过优化邻域保持目标来学习图中节点的低维表示。在基准Pascal3D数据集[48]上,相对于最先进的方法Pose-FromShape[50],我们分别实现了11倍和3倍的空间和时间减少。我们还使用Pix3D数据集测试了我们的模型在未见数据上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信