High Efficiency Microwave Flow Chemistry Towards Synthesis of Functional Materials and Pharmaceutical Cores

J. Barham, Y. Norikane, H. Egami, Y. Hamashima
{"title":"High Efficiency Microwave Flow Chemistry Towards Synthesis of Functional Materials and Pharmaceutical Cores","authors":"J. Barham, Y. Norikane, H. Egami, Y. Hamashima","doi":"10.4995/ampere2019.2019.9860","DOIUrl":null,"url":null,"abstract":"Microwave (MW) heating benefits organic synthesis by affording higher product yields in shorter time periods than conventional heating, yet it suffers from poor scalability and is limited to polar solvents in typical batch mode reactors. Herein, we report a microwave flow reactor using a solid-state semiconductor MW generator. The tunable, single-mode MW heating allows high efficiency, scalable organic synthesis, rapid reaction optimization and is applicable to non-polar solvents (o-Xylene and CPME can be rapidly heated to ca. 260 oC). Auto-frequency tuning compensates for changes in the microwave absorption properties (permittivity, epsilon) with increasing temperature, affording excellent temperature and process control. This technology unlocked unprecedented g/h productivity of C60/fullerene-indene monoadduct (IC60MA) and facilitated a novel, transition metal-free amide-styrene coupling reaction for synthesis of amide-containing pharmaceutical cores in up to 65 g/h (Figure 1). An ortho-Claisen rearrangement reaction was rapidly optimised.","PeriodicalId":277158,"journal":{"name":"Proceedings 17th International Conference on Microwave and High Frequency Heating","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Microwave and High Frequency Heating","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ampere2019.2019.9860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microwave (MW) heating benefits organic synthesis by affording higher product yields in shorter time periods than conventional heating, yet it suffers from poor scalability and is limited to polar solvents in typical batch mode reactors. Herein, we report a microwave flow reactor using a solid-state semiconductor MW generator. The tunable, single-mode MW heating allows high efficiency, scalable organic synthesis, rapid reaction optimization and is applicable to non-polar solvents (o-Xylene and CPME can be rapidly heated to ca. 260 oC). Auto-frequency tuning compensates for changes in the microwave absorption properties (permittivity, epsilon) with increasing temperature, affording excellent temperature and process control. This technology unlocked unprecedented g/h productivity of C60/fullerene-indene monoadduct (IC60MA) and facilitated a novel, transition metal-free amide-styrene coupling reaction for synthesis of amide-containing pharmaceutical cores in up to 65 g/h (Figure 1). An ortho-Claisen rearrangement reaction was rapidly optimised.
高效微波流动化学在功能材料和药芯合成中的应用
微波(MW)加热通过在较短的时间内提供比传统加热更高的产品收率而有利于有机合成,但它的可扩展性较差,并且仅限于典型间歇式反应器中的极性溶剂。在此,我们报告了一种使用固态半导体兆瓦发生器的微波流反应器。可调的单模MW加热允许高效率,可扩展的有机合成,快速反应优化,适用于非极性溶剂(邻二甲苯和CPME可以快速加热到约260℃)。随着温度的升高,自动频率调谐补偿微波吸收特性(介电常数,epsilon)的变化,提供出色的温度和过程控制。该技术解锁了前所未有的C60/富勒烯独立单加合物(IC60MA)的g/h生产率,并促进了一种新的、无过渡金属的酰胺-苯乙烯偶联反应,以高达65 g/h的速度合成含酰胺的药物核心(图1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信