Akie Mayumi, Y. Idomura, Takuya Ina, S. Yamada, Toshiyuki Imamura
{"title":"Left-Preconditioned Communication-Avoiding Conjugate Gradient Methods for Multiphase CFD Simulations on the K Computer","authors":"Akie Mayumi, Y. Idomura, Takuya Ina, S. Yamada, Toshiyuki Imamura","doi":"10.1109/SCALA.2016.7","DOIUrl":null,"url":null,"abstract":"The left-preconditioned communication avoiding conjugate gradient (LP-CA-CG) method is applied to the pressure Poisson equation in the multiphase CFD code JUPITER. The arithmetic intensity of the LP-CA-CG method is analyzed, and is dramatically improved by loop splitting for inner product operations and for three term recurrence operations. Two LPCA-CG solvers with block Jacobi preconditioning and with underlap preconditioning are developed. The former is developed based on a hybrid CA approach, in which CA is applied only to global collective communications for inner product operations. The latter is a full CA approach, in which CA is applied also to local point-to-point communications in sparse matrix-vector (SpMV) operations and preconditioning. CA-SpMV requires additional computation for overlapping regions. CA-preconditiong is enabled by underlap preconditioning, which approximates preconditioning for overlapping regions by point Jacobi preconditioning. It is shown that on the K computer, the former is faster, because the performance of local point-to-point communications scales well, and the convergence property becomes worse with underlap preconditioning. The LP-CA-CG solver shows good strong scaling up to 30,000 nodes, where the LP-CA-CG solver achieved higher performance than the original CG solver by reducing the cost of global collective communications by 69 percent.","PeriodicalId":410521,"journal":{"name":"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCALA.2016.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The left-preconditioned communication avoiding conjugate gradient (LP-CA-CG) method is applied to the pressure Poisson equation in the multiphase CFD code JUPITER. The arithmetic intensity of the LP-CA-CG method is analyzed, and is dramatically improved by loop splitting for inner product operations and for three term recurrence operations. Two LPCA-CG solvers with block Jacobi preconditioning and with underlap preconditioning are developed. The former is developed based on a hybrid CA approach, in which CA is applied only to global collective communications for inner product operations. The latter is a full CA approach, in which CA is applied also to local point-to-point communications in sparse matrix-vector (SpMV) operations and preconditioning. CA-SpMV requires additional computation for overlapping regions. CA-preconditiong is enabled by underlap preconditioning, which approximates preconditioning for overlapping regions by point Jacobi preconditioning. It is shown that on the K computer, the former is faster, because the performance of local point-to-point communications scales well, and the convergence property becomes worse with underlap preconditioning. The LP-CA-CG solver shows good strong scaling up to 30,000 nodes, where the LP-CA-CG solver achieved higher performance than the original CG solver by reducing the cost of global collective communications by 69 percent.