Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit

IF 1 4区 工程技术 Q4 MECHANICS
Agathe Reille , Nicolas Hascoet , Chady Ghnatios , Amine Ammar , Elias Cueto , Jean Louis Duval , Francisco Chinesta , Roland Keunings
{"title":"Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit","authors":"Agathe Reille ,&nbsp;Nicolas Hascoet ,&nbsp;Chady Ghnatios ,&nbsp;Amine Ammar ,&nbsp;Elias Cueto ,&nbsp;Jean Louis Duval ,&nbsp;Francisco Chinesta ,&nbsp;Roland Keunings","doi":"10.1016/j.crme.2019.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then they can be expressed very efficiently using few terms of a tensor decomposition. An efficient procedure is proposed as well as a way for extending it to nonlinear settings while keeping limited the impact of data noise. The proposed methodology is then validated by considering a nonlinear elastic problem and constructing the model relating tractions and displacements at the observation points.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 780-792"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.003","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301743","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 10

Abstract

The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then they can be expressed very efficiently using few terms of a tensor decomposition. An efficient procedure is proposed as well as a way for extending it to nonlinear settings while keeping limited the impact of data noise. The proposed methodology is then validated by considering a nonlinear elastic problem and constructing the model relating tractions and displacements at the observation points.

增量动态模式分解:在低数据限制下运行的简化模型学习器
目前的工作旨在提出一种从少量数据中学习简化模型的新方法。它是基于这样一个事实,离散模型,或者它们的传递函数对应,有一个低秩,然后它们可以非常有效地表达,使用张量分解的几个项。提出了一种有效的方法,并将其扩展到非线性环境,同时限制了数据噪声的影响。然后,通过考虑非线性弹性问题并构建与观测点的牵引力和位移有关的模型来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信