{"title":"Computational technologies in tissue engineering","authors":"H. Almeida, P. Bártolo","doi":"10.2495/BIO130111","DOIUrl":null,"url":null,"abstract":"In last decades, many advances have been made in order to aid the medical community. Numerous computational technologies have been developed and improved the efficiency in diagnostic and treatment of many diseases. Many of the technologies were developed with the main goal of aiding in the research of genetic and viral diseases. Tissue engineering is a multidisciplinary field that requires the combined effort of cell biologists, engineers, material scientists, mathematicians, geneticists, and clinicians toward the development of biological substitutes that restore, maintain, or improve tissue function. The success of this emerging medical domain relies on the current technological advances. This paper presents an overview of the existing computational technologies that have been implemented in tissue engineering and the design of scaffolds for tissue engineering applications. These computational technologies contemplate medical imaging processing, numerical calculations (structural, vascular and topological) and biofabrication techniques necessary for the scaffolds optimum design and production.","PeriodicalId":370021,"journal":{"name":"WIT Transactions on Biomedicine and Health","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT Transactions on Biomedicine and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/BIO130111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In last decades, many advances have been made in order to aid the medical community. Numerous computational technologies have been developed and improved the efficiency in diagnostic and treatment of many diseases. Many of the technologies were developed with the main goal of aiding in the research of genetic and viral diseases. Tissue engineering is a multidisciplinary field that requires the combined effort of cell biologists, engineers, material scientists, mathematicians, geneticists, and clinicians toward the development of biological substitutes that restore, maintain, or improve tissue function. The success of this emerging medical domain relies on the current technological advances. This paper presents an overview of the existing computational technologies that have been implemented in tissue engineering and the design of scaffolds for tissue engineering applications. These computational technologies contemplate medical imaging processing, numerical calculations (structural, vascular and topological) and biofabrication techniques necessary for the scaffolds optimum design and production.