The Application of Neural Network Metamodels Interior Permanent Magnet Machine Performance Prediction

Z. Hanic, A. Hanic, M. Kovacic
{"title":"The Application of Neural Network Metamodels Interior Permanent Magnet Machine Performance Prediction","authors":"Z. Hanic, A. Hanic, M. Kovacic","doi":"10.1109/EDPE53134.2021.9604055","DOIUrl":null,"url":null,"abstract":"To increase the computational efficiency of electrical machine optimization and to utilize transfer learning from one metamodel to another, metamodels based on neural networks seem to be a promising solution. This paper presents a methodology of applying neural networks for developing metamodel for the prediction of interior permanent magnet machine performance. Furthermore, it provides procedures and guidelines on design space sampling and developing neural-network-based metamodels to achieve good predicting performance. The proposed approach has been tested on a case of a six-phase 200 kW IPM motor.","PeriodicalId":117091,"journal":{"name":"2021 International Conference on Electrical Drives & Power Electronics (EDPE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Drives & Power Electronics (EDPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPE53134.2021.9604055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To increase the computational efficiency of electrical machine optimization and to utilize transfer learning from one metamodel to another, metamodels based on neural networks seem to be a promising solution. This paper presents a methodology of applying neural networks for developing metamodel for the prediction of interior permanent magnet machine performance. Furthermore, it provides procedures and guidelines on design space sampling and developing neural-network-based metamodels to achieve good predicting performance. The proposed approach has been tested on a case of a six-phase 200 kW IPM motor.
神经网络元模型在内部永磁电机性能预测中的应用
为了提高电机优化的计算效率,并利用元模型之间的迁移学习,基于神经网络的元模型似乎是一个很有前途的解决方案。本文提出了一种应用神经网络建立内部永磁电机性能预测元模型的方法。此外,它还提供了设计空间采样和开发基于神经网络的元模型的程序和指南,以实现良好的预测性能。该方法已在一台六相200kw IPM电机上进行了试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信