Spectral clustering for detecting protein complexes in PPI networks

Guimin Qin, Lin Gao
{"title":"Spectral clustering for detecting protein complexes in PPI networks","authors":"Guimin Qin, Lin Gao","doi":"10.1109/BICTA.2009.5338129","DOIUrl":null,"url":null,"abstract":"PPI(Protein-protein interaction) networks decomposition is of great importance for understanding and detecting functional complexes in PPI networks. In this paper, we study spectral clustering for detecting protein complexes, focusing on two open issues in spectral clustering: (i) constructing similarity graphs; (ii) determining the number of clusters. Firstly, we study four similarity graphs to construct graph Laplacian matrices. Then we propose a method to determine the number of clusters based on the properties of PPI networks. A large number of experimental results on DIP and MIPS PPI networks indicate that every similarity graph shows its strengths and disadvantages, and our finding of the number of clusters improves the cluster quality. Finally, compared with several typical algorithms, spectral clustering for detecting protein complexes obtains comparable performance.","PeriodicalId":161787,"journal":{"name":"2009 Fourth International on Conference on Bio-Inspired Computing","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International on Conference on Bio-Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2009.5338129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PPI(Protein-protein interaction) networks decomposition is of great importance for understanding and detecting functional complexes in PPI networks. In this paper, we study spectral clustering for detecting protein complexes, focusing on two open issues in spectral clustering: (i) constructing similarity graphs; (ii) determining the number of clusters. Firstly, we study four similarity graphs to construct graph Laplacian matrices. Then we propose a method to determine the number of clusters based on the properties of PPI networks. A large number of experimental results on DIP and MIPS PPI networks indicate that every similarity graph shows its strengths and disadvantages, and our finding of the number of clusters improves the cluster quality. Finally, compared with several typical algorithms, spectral clustering for detecting protein complexes obtains comparable performance.
光谱聚类检测蛋白复合物在PPI网络中的应用
蛋白质-蛋白质相互作用网络的分解对于理解和检测蛋白质相互作用网络中的功能复合物具有重要意义。本文研究了用于蛋白质复合物检测的光谱聚类,重点研究了光谱聚类中的两个开放性问题:(1)构造相似图;(ii)确定集群数量。首先,我们研究了四种相似图来构造图拉普拉斯矩阵。然后,我们提出了一种基于PPI网络特性确定聚类数量的方法。在DIP和MIPS PPI网络上的大量实验结果表明,每个相似图都显示了它的优点和缺点,我们对聚类数量的发现提高了聚类质量。最后,对比几种典型算法,光谱聚类检测蛋白质复合物的性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信