Evaluation of Maximum Likelihood Estimation and regression methods for fusion of multiple satellite Aerosol Optical Depth data over Vietnam

Pham Van Ha, N. X. Truong, D. Laffly, A. Jourdan, N. T. Thanh
{"title":"Evaluation of Maximum Likelihood Estimation and regression methods for fusion of multiple satellite Aerosol Optical Depth data over Vietnam","authors":"Pham Van Ha, N. X. Truong, D. Laffly, A. Jourdan, N. T. Thanh","doi":"10.1109/KSE.2019.8919417","DOIUrl":null,"url":null,"abstract":"This paper applied different data fusion methods including Maximum Likelihood Estimation (MLE) and Linear Regression methods on satellite images over Vietnam areas from Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. In comparison with ground station Aerosol Robotic Network (AERONET), the regression method is better than Maximum Likelihood Estimator (MLE). Our results show that the fusion methods can improve both data coverage and quality of satellite aerosol optical depth (AOD). Strong correlations were observed between fused AOD and AERONET AOD (R2 = 0.8118, 0.7511 for Terra regression and MLE method, respectively). This paper presented the evaluation of data fusion algorithm and highlighted its importance on the satellite AOD data coverage and quality methods from multiple sensors.","PeriodicalId":439841,"journal":{"name":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2019.8919417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper applied different data fusion methods including Maximum Likelihood Estimation (MLE) and Linear Regression methods on satellite images over Vietnam areas from Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. In comparison with ground station Aerosol Robotic Network (AERONET), the regression method is better than Maximum Likelihood Estimator (MLE). Our results show that the fusion methods can improve both data coverage and quality of satellite aerosol optical depth (AOD). Strong correlations were observed between fused AOD and AERONET AOD (R2 = 0.8118, 0.7511 for Terra regression and MLE method, respectively). This paper presented the evaluation of data fusion algorithm and highlighted its importance on the satellite AOD data coverage and quality methods from multiple sensors.
越南多卫星气溶胶光学深度数据融合的最大似然估计和回归方法评价
采用最大似然估计(MLE)和线性回归(Linear Regression)方法对中分辨率成像光谱仪(MODIS)和可见光红外成像辐射计套件(VIIRS)的越南地区卫星图像进行数据融合。与地面站气溶胶机器人网络(AERONET)进行比较,回归方法优于极大似然估计(MLE)。结果表明,融合方法可以提高卫星气溶胶光学深度(AOD)的数据覆盖率和质量。融合AOD与AERONET AOD之间存在较强的相关性(Terra回归法R2 = 0.8118, MLE法R2 = 0.7511)。介绍了数据融合算法的评价,强调了数据融合算法对多传感器卫星AOD数据覆盖和质量方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信