An electromagnetic multi-parameter strategy to detect faults in anchor rods using neural networks

D. Barbosa, L. D. de Medeiros, M. T. de Melo, L. L. Lourenço Novo, M. S. Coutinho, M. M. Alves, R. D. dos Santos, V. L. Tarragô, H. L. Lott Neto, P. Gama
{"title":"An electromagnetic multi-parameter strategy to detect faults in anchor rods using neural networks","authors":"D. Barbosa, L. D. de Medeiros, M. T. de Melo, L. L. Lourenço Novo, M. S. Coutinho, M. M. Alves, R. D. dos Santos, V. L. Tarragô, H. L. Lott Neto, P. Gama","doi":"10.1109/IMOC43827.2019.9317602","DOIUrl":null,"url":null,"abstract":"Network parameters are capable of conveying information about the constitution of a medium in which a highfrequency wave propagates. In this paper, this characteristic is exploited in order to design a nondestructive system to detect corrosion in anchor rods of guyed towers. A compound database is built with the simulated and measured parameters return loss, input impedance, and voltage standing wave ratio for normal and faulty rods examples. Artificial neural networks are used to capture underlying characteristics of data and establish relationships between these parameters and the presence of corrosion in the rods, without the need for physical models. Experimental results show that the innovative use of a multiparameter strategy achieves a high accuracy and enhances the detection capacity of the system.","PeriodicalId":175865,"journal":{"name":"2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC43827.2019.9317602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Network parameters are capable of conveying information about the constitution of a medium in which a highfrequency wave propagates. In this paper, this characteristic is exploited in order to design a nondestructive system to detect corrosion in anchor rods of guyed towers. A compound database is built with the simulated and measured parameters return loss, input impedance, and voltage standing wave ratio for normal and faulty rods examples. Artificial neural networks are used to capture underlying characteristics of data and establish relationships between these parameters and the presence of corrosion in the rods, without the need for physical models. Experimental results show that the innovative use of a multiparameter strategy achieves a high accuracy and enhances the detection capacity of the system.
基于神经网络的锚杆电磁多参数故障检测策略
网络参数能够传递有关高频波在其中传播的介质构成的信息。本文利用这一特性,设计了一套无损检测杆塔锚杆腐蚀的系统。以正常和故障棒为例,建立了模拟和测量参数回波损耗、输入阻抗和电压驻波比的复合数据库。人工神经网络用于捕获数据的潜在特征,并建立这些参数与棒中腐蚀存在之间的关系,而无需物理模型。实验结果表明,多参数策略的创新应用提高了系统的检测精度,增强了系统的检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信