A Signals Intelligence Approach to Automated Assessment of Instrument Capabilities

R. G. Wright, L. Kirkland
{"title":"A Signals Intelligence Approach to Automated Assessment of Instrument Capabilities","authors":"R. G. Wright, L. Kirkland","doi":"10.1109/AUTEST.2018.8532509","DOIUrl":null,"url":null,"abstract":"This paper describes a novel approach using machine learning and artificial intelligence techniques to analyze, describe and assess stimulus and sensor signal characteristics to create a robust and comprehensive description of Automatic Test Equipment (ATE) instrument capabilities. This approach results in a machine language representation providing a more thorough and accurate assessment of ATE stimulus and sensor capabilities that supports digital, analog, and radio frequency (RF) signals and is especially useful for complex RADAR, SONAR, Infrared and other signals where English and natural language descriptions are difficult or impossible to construct. This is accomplished within the structure of IEEE-Std 1641–2010, Signal and Test Definition, with extensions proposed to support machine language renderings of signal descriptions. This approach facilitates use of generic and commercial automated tools and enhances the possibility for interoperability of tools and test programs across DoD ATE.","PeriodicalId":384058,"journal":{"name":"2018 IEEE AUTOTESTCON","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2018.8532509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a novel approach using machine learning and artificial intelligence techniques to analyze, describe and assess stimulus and sensor signal characteristics to create a robust and comprehensive description of Automatic Test Equipment (ATE) instrument capabilities. This approach results in a machine language representation providing a more thorough and accurate assessment of ATE stimulus and sensor capabilities that supports digital, analog, and radio frequency (RF) signals and is especially useful for complex RADAR, SONAR, Infrared and other signals where English and natural language descriptions are difficult or impossible to construct. This is accomplished within the structure of IEEE-Std 1641–2010, Signal and Test Definition, with extensions proposed to support machine language renderings of signal descriptions. This approach facilitates use of generic and commercial automated tools and enhances the possibility for interoperability of tools and test programs across DoD ATE.
仪器性能自动评估的信号情报方法
本文描述了一种使用机器学习和人工智能技术来分析、描述和评估刺激和传感器信号特征的新方法,以创建对自动测试设备(ATE)仪器功能的鲁棒和全面描述。这种方法的结果是机器语言表示,提供了更全面、更准确的ATE刺激和传感器功能评估,支持数字、模拟和射频(RF)信号,特别适用于复杂的雷达、声纳、红外和其他难以或不可能构建英语和自然语言描述的信号。这是在IEEE-Std 1641-2010“信号和测试定义”的结构中完成的,并提出了扩展以支持信号描述的机器语言呈现。这种方法促进了通用和商业自动化工具的使用,并增强了工具和测试程序跨DoD ATE的互操作性的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信