HEp-2 Cell Image Classification with Convolutional Neural Networks

Zhimin Gao, Jianjia Zhang, Luping Zhou, Lei Wang
{"title":"HEp-2 Cell Image Classification with Convolutional Neural Networks","authors":"Zhimin Gao, Jianjia Zhang, Luping Zhou, Lei Wang","doi":"10.1109/I3A.2014.15","DOIUrl":null,"url":null,"abstract":"The diagnosis of many autoimmune diseases can be greatly facilitated by automatic staining patterns classification of Human Epithelial-2 (HEp-2) cells within indirect immunofluorescence (IIF) images. In this paper, we propose a framework to classify the HEp-2 cells by utilizing the deep convolutional neural networks (CNNs). With carefully designed network architecture and optimized parameters, our networks extract features from raw pixels of cell images in a hierarchical manner and perform classification jointly, avoiding using hand-crafted features to represent a HEp-2 cell image. We evaluate our method on the training dataset of HEp-2 cells classification competition held by ICPR 2014. Our system achieves mean class accuracy of 96.7% on the held-out test set and it also obtains competitive performance on the ICPR 2012 cell dataset.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

The diagnosis of many autoimmune diseases can be greatly facilitated by automatic staining patterns classification of Human Epithelial-2 (HEp-2) cells within indirect immunofluorescence (IIF) images. In this paper, we propose a framework to classify the HEp-2 cells by utilizing the deep convolutional neural networks (CNNs). With carefully designed network architecture and optimized parameters, our networks extract features from raw pixels of cell images in a hierarchical manner and perform classification jointly, avoiding using hand-crafted features to represent a HEp-2 cell image. We evaluate our method on the training dataset of HEp-2 cells classification competition held by ICPR 2014. Our system achieves mean class accuracy of 96.7% on the held-out test set and it also obtains competitive performance on the ICPR 2012 cell dataset.
基于卷积神经网络的HEp-2细胞图像分类
间接免疫荧光(IIF)图像中人类上皮-2 (HEp-2)细胞的自动染色模式分类可以极大地促进许多自身免疫性疾病的诊断。在本文中,我们提出了一个利用深度卷积神经网络(cnn)对HEp-2细胞进行分类的框架。通过精心设计的网络架构和优化的参数,我们的网络以分层的方式从细胞图像的原始像素中提取特征并共同进行分类,避免了使用手工制作的特征来表示HEp-2细胞图像。我们在ICPR 2014举办的HEp-2细胞分类大赛的训练数据集上对我们的方法进行了评估。我们的系统在hold -out测试集上达到了96.7%的平均分类准确率,在ICPR 2012单元数据集上也取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信