Distributed Spatial-Temporal Demand and Topology Aware Resource Provisioning for Edge Cloud Services

Vu San Ha Huynh, Milena Radenkovic, Ning Wang
{"title":"Distributed Spatial-Temporal Demand and Topology Aware Resource Provisioning for Edge Cloud Services","authors":"Vu San Ha Huynh, Milena Radenkovic, Ning Wang","doi":"10.1109/FMEC54266.2021.9732562","DOIUrl":null,"url":null,"abstract":"Current edge cloud providers offer a wide range of on-demand private and public cloud services for customers. Predictive demand monitoring and supply optimisation are necessary to deliver truly elastic distributed edge cloud services with resizable resource and compute capacity to adapt to dynamically changing customer requirements. However, current state-of-the-art monitoring and provisioning systems remain reactive which often results in over or under service provisioning, incurring unnecessary costs for customers or deterioration in the quality of service for the end-user. This paper proposes an adaptive protocol, ARPP, that enables distributed real-time demand monitoring and automatic resource provision based on the dynamically changing spatial-temporal workload patterns. ARPP leverages distributed predictive analytics and deep reinforcement learning at the edges to predict the dynamically changing spatial-temporal demand and allocate the appropriate amount of resources at the right times and right locations. We show that ARPP outperforms benchmark and state of the art algorithms across a range of criteria in the face of dynamically changing mobile real-world topologies and user interest patterns.","PeriodicalId":217996,"journal":{"name":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC54266.2021.9732562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current edge cloud providers offer a wide range of on-demand private and public cloud services for customers. Predictive demand monitoring and supply optimisation are necessary to deliver truly elastic distributed edge cloud services with resizable resource and compute capacity to adapt to dynamically changing customer requirements. However, current state-of-the-art monitoring and provisioning systems remain reactive which often results in over or under service provisioning, incurring unnecessary costs for customers or deterioration in the quality of service for the end-user. This paper proposes an adaptive protocol, ARPP, that enables distributed real-time demand monitoring and automatic resource provision based on the dynamically changing spatial-temporal workload patterns. ARPP leverages distributed predictive analytics and deep reinforcement learning at the edges to predict the dynamically changing spatial-temporal demand and allocate the appropriate amount of resources at the right times and right locations. We show that ARPP outperforms benchmark and state of the art algorithms across a range of criteria in the face of dynamically changing mobile real-world topologies and user interest patterns.
边缘云服务的分布式时空需求和拓扑感知资源配置
当前的边缘云提供商为客户提供广泛的按需私有云和公共云服务。预测需求监控和供应优化对于提供真正具有弹性的分布式边缘云服务是必要的,这些服务具有可调整的资源和计算能力,以适应动态变化的客户需求。但是,目前最先进的监测和提供系统仍然处于被动状态,这往往导致服务提供过多或不足,给客户带来不必要的费用或使最终用户的服务质量下降。本文提出了一种基于动态变化的时空工作负载模式的分布式实时需求监控和自动资源供应的自适应协议ARPP。ARPP利用分布式预测分析和边缘深度强化学习来预测动态变化的时空需求,并在正确的时间和正确的位置分配适当数量的资源。我们表明,面对动态变化的移动现实世界拓扑和用户兴趣模式,ARPP在一系列标准上优于基准和最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信