{"title":"Multi-spectral facial biometrics in access control","authors":"K. Lai, S. Samoil, S. Yanushkevich","doi":"10.1109/CIBIM.2014.7015450","DOIUrl":null,"url":null,"abstract":"This paper demonstrates how facial biometrics, acquired using multi-spectral sensors, such as RGB, depth, and infrared, assist the data accumulation in the process of authorizing users of automated and semi-automated access systems. This data serves the purposes of person authentication, as well as facial temperature estimation. We utilize depth data taken using an inexpensive RGB-D sensor to find the head pose of a subject. This allows the selection of video frames containing a frontal-view head pose for face recognition and face temperature reading. Usage of the frontal-view frames improves the efficiency of face recognition while the corresponding synchronized IR video frames allow for more efficient temperature estimation for facial regions of interest.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper demonstrates how facial biometrics, acquired using multi-spectral sensors, such as RGB, depth, and infrared, assist the data accumulation in the process of authorizing users of automated and semi-automated access systems. This data serves the purposes of person authentication, as well as facial temperature estimation. We utilize depth data taken using an inexpensive RGB-D sensor to find the head pose of a subject. This allows the selection of video frames containing a frontal-view head pose for face recognition and face temperature reading. Usage of the frontal-view frames improves the efficiency of face recognition while the corresponding synchronized IR video frames allow for more efficient temperature estimation for facial regions of interest.