Jun-Woo Park, Dong-Eun Kim, Byoung-Sang Kim, Hyen-Wook Kang, Burm-Jong Lee, Y. Kwon
{"title":"Improvement of efficiency for OLED using Zn(HPB)q as electron transporting layer","authors":"Jun-Woo Park, Dong-Eun Kim, Byoung-Sang Kim, Hyen-Wook Kang, Burm-Jong Lee, Y. Kwon","doi":"10.1109/NANO.2010.5698001","DOIUrl":null,"url":null,"abstract":"We synthesized a new material, (2-(2-hydroxy phenyl)benzo xazole)(8-hydoxyquinoline) [(Zn(HPB)q] which has low molecular compound and studied the improvement of OLED using Zn(HPB)q. The PL spectrum of Zn(HPB)q was yellowish green at a wavelength of 532 nm. Through cyclic-voltammetry, the ionization potential (IP) and the electron affinity (EA) were found to be 6.8 eV and 3.5 eV, respectively. We observed the possibility of Zn(HPB)q as electron transporting layer (ETL). Zn(HPB)q has been investigated as an ETL in the OLED and the optimal thickness of the Zn(HPB)q layer is about 10nm. We have obtained an improvement of luminance and decrease of turn-on voltage using Zn(HPB)q as ETL.","PeriodicalId":254587,"journal":{"name":"10th IEEE International Conference on Nanotechnology","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2010.5698001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We synthesized a new material, (2-(2-hydroxy phenyl)benzo xazole)(8-hydoxyquinoline) [(Zn(HPB)q] which has low molecular compound and studied the improvement of OLED using Zn(HPB)q. The PL spectrum of Zn(HPB)q was yellowish green at a wavelength of 532 nm. Through cyclic-voltammetry, the ionization potential (IP) and the electron affinity (EA) were found to be 6.8 eV and 3.5 eV, respectively. We observed the possibility of Zn(HPB)q as electron transporting layer (ETL). Zn(HPB)q has been investigated as an ETL in the OLED and the optimal thickness of the Zn(HPB)q layer is about 10nm. We have obtained an improvement of luminance and decrease of turn-on voltage using Zn(HPB)q as ETL.