Inception-v3 for flower classification

Xiaoling Xia, Cui Xu, Bing Nan
{"title":"Inception-v3 for flower classification","authors":"Xiaoling Xia, Cui Xu, Bing Nan","doi":"10.1109/ICIVC.2017.7984661","DOIUrl":null,"url":null,"abstract":"The study of flower classification system is a very important subject in the field of Botany. A classifier of flowers with high accuracy will also bring a lot of fun to people's lives. However, because of the complex background of flowers, the similarity between the different species of flowers, and the differences among the same species of flowers, there are still some challenges in the recognition of flower images. The traditional flower classification is mainly based on the three features: color, shape and texture, this classification requires people to select features for classification, and the accuracy is not very high. In this paper, based on Inception-v3 model of TensorFlow platform, we use the transfer learning technology to retrain the flower category datasets, which can greatly improve the accuracy of flower classification.","PeriodicalId":181522,"journal":{"name":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"325","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2017.7984661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 325

Abstract

The study of flower classification system is a very important subject in the field of Botany. A classifier of flowers with high accuracy will also bring a lot of fun to people's lives. However, because of the complex background of flowers, the similarity between the different species of flowers, and the differences among the same species of flowers, there are still some challenges in the recognition of flower images. The traditional flower classification is mainly based on the three features: color, shape and texture, this classification requires people to select features for classification, and the accuracy is not very high. In this paper, based on Inception-v3 model of TensorFlow platform, we use the transfer learning technology to retrain the flower category datasets, which can greatly improve the accuracy of flower classification.
Inception-v3用于花卉分类
花卉分类系统的研究是植物学领域的一个重要课题。一个准确率高的花卉分类器也会给人们的生活带来很多乐趣。然而,由于花卉背景的复杂性、不同种类花卉之间的相似性以及同一种类花卉之间的差异性,使得花卉图像的识别仍然存在一定的挑战。传统的花卉分类主要是根据颜色、形状和纹理三个特征进行分类,这种分类需要人们选择特征进行分类,而且准确率不是很高。本文基于TensorFlow平台的Inception-v3模型,利用迁移学习技术对花卉分类数据集进行再训练,极大地提高了花卉分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信