Game State Learning via Game Scene Augmentation

C. Trivedi, Konstantinos Makantasis, Antonios Liapis, Georgios N. Yannakakis
{"title":"Game State Learning via Game Scene Augmentation","authors":"C. Trivedi, Konstantinos Makantasis, Antonios Liapis, Georgios N. Yannakakis","doi":"10.1145/3555858.3555902","DOIUrl":null,"url":null,"abstract":"Having access to accurate game state information is of utmost importance for any artificial intelligence task including game-playing, testing, player modeling, and procedural content generation. Self-Supervised Learning (SSL) techniques have shown to be capable of inferring accurate game state information from the high-dimensional pixel input of game footage into compressed latent representations. Contrastive Learning is a popular SSL paradigm where the visual understanding of the game’s images comes from contrasting dissimilar and similar game states defined by simple image augmentation methods. In this study, we introduce a new game scene augmentation technique—named GameCLR—that takes advantage of the game-engine to define and synthesize specific, highly-controlled renderings of different game states, thereby, boosting contrastive learning performance. We test our GameCLR technique on images of the CARLA driving simulator environment and compare it against the popular SimCLR baseline SSL method. Our results suggest that GameCLR can infer the game’s state information from game footage more accurately compared to the baseline. Our proposed approach allows us to conduct game artificial intelligence research by directly utilizing screen pixels as input.","PeriodicalId":290159,"journal":{"name":"Proceedings of the 17th International Conference on the Foundations of Digital Games","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on the Foundations of Digital Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555858.3555902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Having access to accurate game state information is of utmost importance for any artificial intelligence task including game-playing, testing, player modeling, and procedural content generation. Self-Supervised Learning (SSL) techniques have shown to be capable of inferring accurate game state information from the high-dimensional pixel input of game footage into compressed latent representations. Contrastive Learning is a popular SSL paradigm where the visual understanding of the game’s images comes from contrasting dissimilar and similar game states defined by simple image augmentation methods. In this study, we introduce a new game scene augmentation technique—named GameCLR—that takes advantage of the game-engine to define and synthesize specific, highly-controlled renderings of different game states, thereby, boosting contrastive learning performance. We test our GameCLR technique on images of the CARLA driving simulator environment and compare it against the popular SimCLR baseline SSL method. Our results suggest that GameCLR can infer the game’s state information from game footage more accurately compared to the baseline. Our proposed approach allows us to conduct game artificial intelligence research by directly utilizing screen pixels as input.
通过游戏场景增强学习游戏状态
获得准确的游戏状态信息对于任何人工智能任务都是至关重要的,包括游戏体验、测试、玩家建模和程序内容生成。自监督学习(SSL)技术已经证明能够从游戏素材的高维像素输入推断出精确的游戏状态信息到压缩的潜在表示。对比学习是一种流行的SSL范例,其中对游戏图像的视觉理解来自于通过简单的图像增强方法定义的不同和相似的游戏状态的对比。在这项研究中,我们引入了一种新的游戏场景增强技术——名为gameclr——它利用游戏引擎来定义和合成不同游戏状态的特定的、高度可控的渲染,从而提高对比学习性能。我们在CARLA驾驶模拟器环境的图像上测试了我们的GameCLR技术,并将其与流行的SimCLR基线SSL方法进行比较。我们的研究结果表明,与基线相比,GameCLR可以更准确地从游戏画面中推断出游戏的状态信息。我们提出的方法允许我们通过直接利用屏幕像素作为输入来进行游戏人工智能研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信