Improving the effectiveness of collaborative recommendation with ontology-based user profiles

HetRec '10 Pub Date : 2010-09-26 DOI:10.1145/1869446.1869452
A. Sieg, B. Mobasher, R. Burke
{"title":"Improving the effectiveness of collaborative recommendation with ontology-based user profiles","authors":"A. Sieg, B. Mobasher, R. Burke","doi":"10.1145/1869446.1869452","DOIUrl":null,"url":null,"abstract":"Collaborative recommendation is effective at representing a user's overall interests and tastes, and finding peer users that can provide good recommendations. However, it remains a challenge to make collaborative recommendation sensitive to a user's specific context and to the changing shape of user interests over time. Our approach to building context-sensitive collaborative recommendation is a hybrid one that incorporates semantic knowledge in the form of a domain ontology. User profiles are defined relative to the ontology, giving rise to an ontological user profile. In this paper, we describe how ontological user profiles are learned, incrementally updated, and used for collaborative recommendation. Using book rating data, we demonstrate that this recommendation algorithm offers improved coverage, diversity, personalization, and cold-start performance while at the same time enhancing recommendation accuracy.","PeriodicalId":258506,"journal":{"name":"HetRec '10","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HetRec '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869446.1869452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

Collaborative recommendation is effective at representing a user's overall interests and tastes, and finding peer users that can provide good recommendations. However, it remains a challenge to make collaborative recommendation sensitive to a user's specific context and to the changing shape of user interests over time. Our approach to building context-sensitive collaborative recommendation is a hybrid one that incorporates semantic knowledge in the form of a domain ontology. User profiles are defined relative to the ontology, giving rise to an ontological user profile. In this paper, we describe how ontological user profiles are learned, incrementally updated, and used for collaborative recommendation. Using book rating data, we demonstrate that this recommendation algorithm offers improved coverage, diversity, personalization, and cold-start performance while at the same time enhancing recommendation accuracy.
利用基于本体的用户配置文件提高协同推荐的有效性
协作推荐可以有效地代表用户的整体兴趣和品味,并找到可以提供良好推荐的同行用户。然而,如何使协同推荐对用户的特定上下文和用户兴趣随时间变化的形状敏感,仍然是一个挑战。我们构建上下文敏感的协同推荐的方法是一种混合方法,它将语义知识以领域本体的形式合并在一起。用户配置文件是相对于本体定义的,从而产生本体用户配置文件。在本文中,我们描述了如何学习、增量更新本体用户配置文件,并将其用于协作推荐。使用图书评级数据,我们证明了该推荐算法在提高推荐准确性的同时,提供了更好的覆盖率、多样性、个性化和冷启动性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信