High-dimensional mutual information estimation for image registration

J. Kybic
{"title":"High-dimensional mutual information estimation for image registration","authors":"J. Kybic","doi":"10.1109/ICIP.2004.1421419","DOIUrl":null,"url":null,"abstract":"We present a new algorithm for mutual information estimation for image registration based on the nearest neighbor entropy estimator of Kozachenko and Leonenko. We modify the algorithm to be numerically robust and computationally efficient, with optimal asymptotic complexity O(N/sub pixels/d/sub dim/). We propose two MI-based criteria exploiting the high-dimensionality of the feature space and show their effectiveness in determining the correct alignment even in difficult cases when classical criteria fail.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We present a new algorithm for mutual information estimation for image registration based on the nearest neighbor entropy estimator of Kozachenko and Leonenko. We modify the algorithm to be numerically robust and computationally efficient, with optimal asymptotic complexity O(N/sub pixels/d/sub dim/). We propose two MI-based criteria exploiting the high-dimensionality of the feature space and show their effectiveness in determining the correct alignment even in difficult cases when classical criteria fail.
图像配准的高维互信息估计
基于Kozachenko和Leonenko的最近邻熵估计,提出了一种新的图像配准互信息估计算法。我们修改了算法,使其具有数值鲁棒性和计算效率,最优渐近复杂度为O(N/sub pixels/d/sub dim/)。我们提出了两个基于mi的标准,利用特征空间的高维性,并展示了它们在确定正确对齐时的有效性,即使在经典标准失败的困难情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信