Development of effective XGB model to predict the Axial Load Capacity of circular CFST columns

Indra Prakash, Raghvendra Kumar, Thuy-Anh Nguyen, Phuong Thao Vu
{"title":"Development of effective XGB model to predict the Axial Load Capacity of circular CFST columns","authors":"Indra Prakash, Raghvendra Kumar, Thuy-Anh Nguyen, Phuong Thao Vu","doi":"10.58845/jstt.utt.2022.en128","DOIUrl":null,"url":null,"abstract":"The Axial Load Capacity (ALC) of Concrete-Filled Steel Tubular (CFST) structural members is regarded as one of the most crucial technical factors for the design of these composite structures. This work proposes the development and application of the Extreme Gradient Boosting (XGB) model to forecast the ALC of circular CFST structural components using the affecting input parameters, namely column diameter, steel tube thickness, column length, steel yield strength, and concrete compressive strength.  A dataset of 2073 experimental results from the literature was used for the model development. The performance of the XGB model was evaluated using statistical criteria such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), and Mean Absolute Percentage Error (MAPE). The five-fold cross-validation technique and Monte Carlo simulation method were used to evaluate the model's performance. The results show good performance of the XGB model (R2 = 0.999, RMSE = 242.757 kN, MAE = 157.045 kN, and MAPE = 0.057) in predicting the circular CFST’s ALC.","PeriodicalId":117856,"journal":{"name":"Journal of Science and Transport Technology","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Transport Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58845/jstt.utt.2022.en128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Axial Load Capacity (ALC) of Concrete-Filled Steel Tubular (CFST) structural members is regarded as one of the most crucial technical factors for the design of these composite structures. This work proposes the development and application of the Extreme Gradient Boosting (XGB) model to forecast the ALC of circular CFST structural components using the affecting input parameters, namely column diameter, steel tube thickness, column length, steel yield strength, and concrete compressive strength.  A dataset of 2073 experimental results from the literature was used for the model development. The performance of the XGB model was evaluated using statistical criteria such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), and Mean Absolute Percentage Error (MAPE). The five-fold cross-validation technique and Monte Carlo simulation method were used to evaluate the model's performance. The results show good performance of the XGB model (R2 = 0.999, RMSE = 242.757 kN, MAE = 157.045 kN, and MAPE = 0.057) in predicting the circular CFST’s ALC.
CFST圆形柱轴向承载力有效的XGB模型的建立
钢管混凝土(CFST)结构构件的轴向承载力是钢管混凝土组合结构设计中最关键的技术因素之一。本文提出利用柱径、钢管厚度、柱长、钢材屈服强度和混凝土抗压强度等影响输入参数,开发并应用极限梯度提升(XGB)模型来预测圆形CFST结构构件的极限承载力。模型开发使用了来自文献的2073个实验结果数据集。采用均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)和平均绝对百分比误差(MAPE)等统计标准评价XGB模型的性能。采用五重交叉验证技术和蒙特卡罗模拟方法对模型的性能进行了评价。结果表明,XGB模型(R2 = 0.999, RMSE = 242.757 kN, MAE = 157.045 kN, MAPE = 0.057)能较好地预测圆形CFST的ALC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信