An introduction to higher categorical algebra

David Gepner
{"title":"An introduction to higher categorical algebra","authors":"David Gepner","doi":"10.1201/9781351251624-13","DOIUrl":null,"url":null,"abstract":"This article is a survey of algebra in the $\\infty$-categorical context, as developed by Lurie in \"Higher Algebra\", and is a chapter in the \"Handbook of Homotopy Theory\". We begin by introducing symmetric monoidal stable $\\infty$-categories, such as the derived $\\infty$-category of a commutative ring, before turning to our main example, the $\\infty$-category of spectra. We then go on to consider ring spectra and their $\\infty$-categories of modules, as well as basic constructions such as localization, completion, and dualizability. We conclude with a brief account of the cotangent complex and deformation theory.","PeriodicalId":378948,"journal":{"name":"Handbook of Homotopy Theory","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Homotopy Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351251624-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article is a survey of algebra in the $\infty$-categorical context, as developed by Lurie in "Higher Algebra", and is a chapter in the "Handbook of Homotopy Theory". We begin by introducing symmetric monoidal stable $\infty$-categories, such as the derived $\infty$-category of a commutative ring, before turning to our main example, the $\infty$-category of spectra. We then go on to consider ring spectra and their $\infty$-categories of modules, as well as basic constructions such as localization, completion, and dualizability. We conclude with a brief account of the cotangent complex and deformation theory.
高等范畴代数导论
本文是在$\infty$ -范畴背景下对代数的概述,由Lurie在“高等代数”中开发,并且是“同伦理论手册”中的一章。我们首先介绍对称单轴稳定的$\infty$ -范畴,例如可交换环的$\infty$ -范畴的推导,然后再讨论我们的主要例子,光谱的$\infty$ -范畴。然后,我们继续考虑环光谱及其$\infty$ -模块类别,以及基本结构,如定位,补全和可二象性。最后简要介绍了余切复合体和变形理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信