An eigendecomposition based adaptive spatial sampling technique for wireless sensor networks

Sabri-E. Zaman, Manik Gupta, R. Mondragón, E. Bodanese
{"title":"An eigendecomposition based adaptive spatial sampling technique for wireless sensor networks","authors":"Sabri-E. Zaman, Manik Gupta, R. Mondragón, E. Bodanese","doi":"10.1109/LCN.2014.6925809","DOIUrl":null,"url":null,"abstract":"We propose a real-time adaptive- spatial sampling technique for the efficient collection of fine grained data in wireless sensor networks. The collection of fine grained data can incur high energy costs. This energy costs can be reduced by exploiting the spatial correlations of adjacent nodes, where only the most dominant nodes collect the data. We show that, using concepts developed in Random Matrix Theory, it is possible to determine the dominant nodes which enable to process noisy data in a time efficient, scalable, decentralized manner. The proposed technique has been validated using spatially interpolated pollution datasets giving good results in terms of data reduction and accuracy.","PeriodicalId":143262,"journal":{"name":"39th Annual IEEE Conference on Local Computer Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2014.6925809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a real-time adaptive- spatial sampling technique for the efficient collection of fine grained data in wireless sensor networks. The collection of fine grained data can incur high energy costs. This energy costs can be reduced by exploiting the spatial correlations of adjacent nodes, where only the most dominant nodes collect the data. We show that, using concepts developed in Random Matrix Theory, it is possible to determine the dominant nodes which enable to process noisy data in a time efficient, scalable, decentralized manner. The proposed technique has been validated using spatially interpolated pollution datasets giving good results in terms of data reduction and accuracy.
基于特征分解的无线传感器网络自适应空间采样技术
为了在无线传感器网络中有效地采集细粒度数据,提出了一种实时自适应空间采样技术。细粒度数据的收集可能会产生高昂的能源成本。这种能量消耗可以通过利用相邻节点的空间相关性来降低,其中只有最主要的节点收集数据。我们表明,使用随机矩阵理论中开发的概念,可以确定能够以时间效率,可扩展,分散的方式处理噪声数据的主导节点。所提出的技术已经使用空间插值污染数据集进行了验证,在数据减少和准确性方面取得了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信