Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System

H. Ltaief, D. Sukkari, O. Guyon, D. Keyes
{"title":"Extreme Computing for Extreme Adaptive Optics: The Key to Finding Life Outside our Solar System","authors":"H. Ltaief, D. Sukkari, O. Guyon, D. Keyes","doi":"10.1145/3218176.3218225","DOIUrl":null,"url":null,"abstract":"The real-time correction of telescopic images in the search for exoplanets is highly sensitive to atmospheric aberrations. The pseudo-inverse algorithm is an efficient mathematical method to filter out these turbulences. We introduce a new partial singular value decomposition (SVD) algorithm based on QR-based Diagonally Weighted Halley (QDWH) iteration for the pseudo-inverse method of adaptive optics. The QDWH partial SVD algorithm selectively calculates the most significant singular values and their corresponding singular vectors. We develop a high performance implementation and demonstrate the numerical robustness of the QDWH-based partial SVD method. We also perform a benchmarking campaign on various generations of GPU hardware accelerators and compare against the state-of-the-art SVD implementation SGESDD from the MAGMA library. Numerical accuracy and performance results are reported using synthetic and real observational datasets from the Subaru telescope. Our implementation outperforms SGESDD by up to fivefold and fourfold performance speedups on ill-conditioned synthetic matrices and real observational datasets, respectively. The pseudo-inverse simulation code will be deployed on-sky for the Subaru telescope during observation nights scheduled early 2018.","PeriodicalId":174137,"journal":{"name":"Proceedings of the Platform for Advanced Scientific Computing Conference","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Platform for Advanced Scientific Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218176.3218225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The real-time correction of telescopic images in the search for exoplanets is highly sensitive to atmospheric aberrations. The pseudo-inverse algorithm is an efficient mathematical method to filter out these turbulences. We introduce a new partial singular value decomposition (SVD) algorithm based on QR-based Diagonally Weighted Halley (QDWH) iteration for the pseudo-inverse method of adaptive optics. The QDWH partial SVD algorithm selectively calculates the most significant singular values and their corresponding singular vectors. We develop a high performance implementation and demonstrate the numerical robustness of the QDWH-based partial SVD method. We also perform a benchmarking campaign on various generations of GPU hardware accelerators and compare against the state-of-the-art SVD implementation SGESDD from the MAGMA library. Numerical accuracy and performance results are reported using synthetic and real observational datasets from the Subaru telescope. Our implementation outperforms SGESDD by up to fivefold and fourfold performance speedups on ill-conditioned synthetic matrices and real observational datasets, respectively. The pseudo-inverse simulation code will be deployed on-sky for the Subaru telescope during observation nights scheduled early 2018.
极端自适应光学的极端计算:寻找太阳系外生命的关键
在寻找系外行星的过程中,望远镜图像的实时校正对大气像差非常敏感。伪逆算法是一种有效的过滤湍流的数学方法。针对自适应光学伪逆方法,提出了一种基于qr的对角加权哈雷(QDWH)迭代的偏奇异值分解(SVD)算法。QDWH部分奇异值分解算法选择性地计算最显著奇异值及其对应的奇异向量。我们开发了一个高性能的实现,并证明了基于qdwh的部分奇异值分解方法的数值鲁棒性。我们还在不同代的GPU硬件加速器上执行基准测试活动,并与MAGMA库中最先进的SVD实现SGESDD进行比较。使用来自斯巴鲁望远镜的合成和真实观测数据集报告了数值精度和性能结果。我们的实现在病态合成矩阵和实际观测数据集上的性能分别比SGESDD提高了5倍和4倍。伪逆模拟代码将在2018年初的观测夜部署在斯巴鲁望远镜的天空中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信