An optimized support vector machine classifier to extract abnormal features from breast microwave tomography data

S. Aminikhanghahi, Sung Y. Shin, Wei Wang, Seong‐Ho Son, S. Jeon
{"title":"An optimized support vector machine classifier to extract abnormal features from breast microwave tomography data","authors":"S. Aminikhanghahi, Sung Y. Shin, Wei Wang, Seong‐Ho Son, S. Jeon","doi":"10.1145/2663761.2664230","DOIUrl":null,"url":null,"abstract":"Microwave Tomography (MT) as a new electronic healthcare system tries to measure dielectric properties of tissues inside the breast and helps early breast cancer detection. In this paper, we propose a new classifier to extract tumor information from Microwave Tomography raw data to determine whether the breast needs further diagnosis or not. The proposed method uses grid search algorithm to optimize support vector machine classifier. The results show that optimized SVM can improve measure of performances such as MCC, specificity and sensitivity. The new classifier can be a promising tool to provide preliminary decision support information to physicians for further diagnosis.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663761.2664230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Microwave Tomography (MT) as a new electronic healthcare system tries to measure dielectric properties of tissues inside the breast and helps early breast cancer detection. In this paper, we propose a new classifier to extract tumor information from Microwave Tomography raw data to determine whether the breast needs further diagnosis or not. The proposed method uses grid search algorithm to optimize support vector machine classifier. The results show that optimized SVM can improve measure of performances such as MCC, specificity and sensitivity. The new classifier can be a promising tool to provide preliminary decision support information to physicians for further diagnosis.
一种优化的支持向量机分类器提取乳腺微波断层扫描数据中的异常特征
微波断层扫描(MT)作为一种新型的电子医疗系统,试图测量乳腺内组织的介电特性,从而有助于乳腺癌的早期检测。在本文中,我们提出了一种新的分类器,从微波断层扫描原始数据中提取肿瘤信息,以确定乳房是否需要进一步诊断。该方法采用网格搜索算法对支持向量机分类器进行优化。结果表明,优化后的支持向量机可以提高MCC、特异性和灵敏度等性能指标。新的分类器可以是一个有前途的工具,提供初步的决策支持信息,以进一步诊断的医生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信