Multi-core acceleration of chemical kinetics for simulation and prediction

J. C. Linford, J. Michalakes, Manish Vachharajani, Adrian Sandu
{"title":"Multi-core acceleration of chemical kinetics for simulation and prediction","authors":"J. C. Linford, J. Michalakes, Manish Vachharajani, Adrian Sandu","doi":"10.1145/1654059.1654067","DOIUrl":null,"url":null,"abstract":"This work implements a computationally expensive chemical kinetics kernel from a large-scale community atmospheric model on three multi-core platforms: NVIDIA GPUs using CUDA, the Cell Broadband Engine, and Intel Quad-Core Xeon CPUs. A comparative performance analysis for each platform in double and single precision on coarse and fine grids is presented. Platform-specific design and optimization is discussed in a mechanism-agnostic way, permitting the optimization of many chemical mechanisms. The implementation of a three-stage Rosenbrock solver for SIMD architectures is discussed. When used as a template mechanism in the the Kinetic PreProcessor, the multi-core implementation enables the automatic optimization and porting of many chemical mechanisms on a variety of multi-core platforms. Speedups of 5.5x in single precision and 2.7x in double precision are observed when compared to eight Xeon cores. Compared to the serial implementation, the maximum observed speedup is 41.1x in single precision.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

This work implements a computationally expensive chemical kinetics kernel from a large-scale community atmospheric model on three multi-core platforms: NVIDIA GPUs using CUDA, the Cell Broadband Engine, and Intel Quad-Core Xeon CPUs. A comparative performance analysis for each platform in double and single precision on coarse and fine grids is presented. Platform-specific design and optimization is discussed in a mechanism-agnostic way, permitting the optimization of many chemical mechanisms. The implementation of a three-stage Rosenbrock solver for SIMD architectures is discussed. When used as a template mechanism in the the Kinetic PreProcessor, the multi-core implementation enables the automatic optimization and porting of many chemical mechanisms on a variety of multi-core platforms. Speedups of 5.5x in single precision and 2.7x in double precision are observed when compared to eight Xeon cores. Compared to the serial implementation, the maximum observed speedup is 41.1x in single precision.
用于模拟和预测的化学动力学多核加速
这项工作在三个多核平台上实现了一个计算昂贵的化学动力学内核,该内核来自一个大型社区大气模型:使用CUDA的NVIDIA gpu, Cell宽带引擎和英特尔四核Xeon cpu。对各平台在粗网格和细网格上的双精度和单精度性能进行了对比分析。平台特定的设计和优化以一种机制不可知的方式进行讨论,允许许多化学机制的优化。讨论了SIMD体系结构的三阶段Rosenbrock求解器的实现。当在Kinetic PreProcessor中用作模板机制时,多核实现可以在各种多核平台上自动优化和移植许多化学机制。与8个Xeon内核相比,单精度速度提高了5.5倍,双精度速度提高了2.7倍。与串行实现相比,单精度下观察到的最大加速是41.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信