Deep Learning Techniques for Traffic Speed Forecasting with Side Information

Parinaz Farajiparvar, Nima Hoseinzadeh, Lee D. Han, A. Hedayatipour
{"title":"Deep Learning Techniques for Traffic Speed Forecasting with Side Information","authors":"Parinaz Farajiparvar, Nima Hoseinzadeh, Lee D. Han, A. Hedayatipour","doi":"10.1109/IGESSC50231.2020.9285132","DOIUrl":null,"url":null,"abstract":"Traffic speed prediction is an ongoing challenge for researchers, transportation agencies, and navigation applications. Involving real-world speed data makes the prediction complex and dynamic. The stochastic nature of traffic makes predictions using traditional statistical methods unsatisfying in terms of accuracy and performance. Recently, deep learning methods have gained more attention to capture this chaotic characteristic. This study conducts an encoder-decoder sequence to sequence learning manner and WaveNet with a side information model and compares the results with Autoregressive Integrated Moving Average. Using Waze crowdsourced speed data collected from 31 segments of Interstate 40 (I-40) in Tennessee, the proposed algorithms are trained and tested for short- and long term speed prediction (time steps from 5-minutes to 2-hours). Our experimental results demonstrate the WaveNet model with side information achieves the best performance with MAPE 4.40% for 5-minuets and MAPE 5.58% for 2-hours prediction.","PeriodicalId":437709,"journal":{"name":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGESSC50231.2020.9285132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traffic speed prediction is an ongoing challenge for researchers, transportation agencies, and navigation applications. Involving real-world speed data makes the prediction complex and dynamic. The stochastic nature of traffic makes predictions using traditional statistical methods unsatisfying in terms of accuracy and performance. Recently, deep learning methods have gained more attention to capture this chaotic characteristic. This study conducts an encoder-decoder sequence to sequence learning manner and WaveNet with a side information model and compares the results with Autoregressive Integrated Moving Average. Using Waze crowdsourced speed data collected from 31 segments of Interstate 40 (I-40) in Tennessee, the proposed algorithms are trained and tested for short- and long term speed prediction (time steps from 5-minutes to 2-hours). Our experimental results demonstrate the WaveNet model with side information achieves the best performance with MAPE 4.40% for 5-minuets and MAPE 5.58% for 2-hours prediction.
基于侧信息的交通速度预测的深度学习技术
交通速度预测对研究人员、交通运输机构和导航应用程序来说是一个持续的挑战。涉及实际速度数据使预测变得复杂和动态。交通的随机性使得传统的统计方法在预测的准确性和性能上都不能令人满意。近年来,深度学习方法越来越受到关注,以捕捉这种混沌特征。本研究将编码器-解码器序列以序列学习方式和带有侧信息模型的WaveNet进行,并将结果与自回归综合移动平均进行比较。利用Waze从田纳西州40号州际公路(I-40)的31个路段收集的众包速度数据,对提出的算法进行了训练和测试,以进行短期和长期速度预测(时间步长从5分钟到2小时)。我们的实验结果表明,带有侧信息的WaveNet模型在5分钟内的MAPE为4.40%,在2小时内的MAPE为5.58%,达到了最佳的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信