Cyber-Physical System Security Surveillance using Knowledge Graph based Digital Twins - A Smart Farming Usecase

Sai Sree Laya Chukkapalli, Nisha Pillai, Sudip Mittal, A. Joshi
{"title":"Cyber-Physical System Security Surveillance using Knowledge Graph based Digital Twins - A Smart Farming Usecase","authors":"Sai Sree Laya Chukkapalli, Nisha Pillai, Sudip Mittal, A. Joshi","doi":"10.13016/M2XUYO-LZ8V","DOIUrl":null,"url":null,"abstract":"Rapid advancements in Cyber-Physical System (CPS) capabilities have motivated farmers to deploy this ecosystem on their farms. However, there is a growing concern among users regarding the security risks associated with CPS. Especially with rising number of cyber-attacks on CPS, such as modifying sensor readings, interrupting operations, etc. Therefore, this paper describes a security surveillance framework to detect deviations in the ecosystem by incorporating a digital twin supported anomaly detection model. The reason for incorporating digital twins is that they add value by enabling real-time monitoring of connected smart farms. We pre-process the collected data from sensors deployed on the smart farm setup. The pre-processed data is fused with our smart farm ontology to populate a knowledge graph. The generated graph is further queried to extract the necessary sensor data. We utilize the extracted normal data to train the anomaly detection model. Further, we tested our model if it identifies abnormal values from sensors by simulating anomalous use case scenarios specific to our ecosystem.","PeriodicalId":347770,"journal":{"name":"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13016/M2XUYO-LZ8V","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Rapid advancements in Cyber-Physical System (CPS) capabilities have motivated farmers to deploy this ecosystem on their farms. However, there is a growing concern among users regarding the security risks associated with CPS. Especially with rising number of cyber-attacks on CPS, such as modifying sensor readings, interrupting operations, etc. Therefore, this paper describes a security surveillance framework to detect deviations in the ecosystem by incorporating a digital twin supported anomaly detection model. The reason for incorporating digital twins is that they add value by enabling real-time monitoring of connected smart farms. We pre-process the collected data from sensors deployed on the smart farm setup. The pre-processed data is fused with our smart farm ontology to populate a knowledge graph. The generated graph is further queried to extract the necessary sensor data. We utilize the extracted normal data to train the anomaly detection model. Further, we tested our model if it identifies abnormal values from sensors by simulating anomalous use case scenarios specific to our ecosystem.
基于知识图谱的数字孪生网络物理系统安全监控——一个智能农业用例
网络物理系统(CPS)能力的快速发展促使农民在他们的农场部署这种生态系统。然而,用户越来越关注与CPS相关的安全风险。特别是随着对CPS的网络攻击越来越多,例如修改传感器读数,中断操作等。因此,本文描述了一个安全监控框架,通过结合数字孪生支持的异常检测模型来检测生态系统中的偏差。引入数字孪生的原因是,它们可以通过实时监控连接的智能农场来增加价值。我们对部署在智能农场设置上的传感器收集的数据进行预处理。预处理后的数据与我们的智能农场本体融合,形成知识图谱。进一步查询生成的图以提取必要的传感器数据。我们利用提取的正常数据来训练异常检测模型。此外,我们通过模拟特定于我们生态系统的异常用例场景来测试我们的模型是否能够识别来自传感器的异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信