Maximum—A Posteriori Estimation of Linear Time-Invariant State-Space Models via Efficient Monte-Carlo Sampling

Manas Mejari, D. Piga
{"title":"Maximum—A Posteriori Estimation of Linear Time-Invariant State-Space Models via Efficient Monte-Carlo Sampling","authors":"Manas Mejari, D. Piga","doi":"10.1115/1.4051491","DOIUrl":null,"url":null,"abstract":"\n This article addresses maximum-a-posteriori (MAP) estimation of linear time-invariant state-space (LTI-SS) models. The joint posterior distribution of the model matrices and the unknown state sequence is approximated by using Rao-Blackwellized Monte-Carlo sampling algorithms. Specifically, the conditional distribution of the state sequence given the model parameters is derived analytically, while only the marginal posterior distribution of the model matrices is approximated using a Metropolis-Hastings Markov Chain Monte-Carlo sampler. From the joint distribution, MAP estimates of the unknown model matrices as well as the state sequence are computed. The performance of the proposed algorithm is demonstrated on a numerical example and on a real laboratory benchmark dataset of a hair dryer process.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses maximum-a-posteriori (MAP) estimation of linear time-invariant state-space (LTI-SS) models. The joint posterior distribution of the model matrices and the unknown state sequence is approximated by using Rao-Blackwellized Monte-Carlo sampling algorithms. Specifically, the conditional distribution of the state sequence given the model parameters is derived analytically, while only the marginal posterior distribution of the model matrices is approximated using a Metropolis-Hastings Markov Chain Monte-Carlo sampler. From the joint distribution, MAP estimates of the unknown model matrices as well as the state sequence are computed. The performance of the proposed algorithm is demonstrated on a numerical example and on a real laboratory benchmark dataset of a hair dryer process.
基于有效蒙特卡罗采样的线性时不变状态空间模型的最大- a后验估计
本文讨论线性时不变状态空间(LTI-SS)模型的最大后验估计。利用rao - blackwell化蒙特卡罗采样算法,逼近了模型矩阵和未知状态序列的联合后验分布。具体地说,在给定模型参数的情况下,分析推导了状态序列的条件分布,而使用Metropolis-Hastings马尔可夫链蒙特卡罗采样器只近似了模型矩阵的边际后验分布。从联合分布出发,计算未知模型矩阵的MAP估计和状态序列。在一个数值算例和一个真实的实验室吹风机过程基准数据集上验证了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信