A LC Model With Change-Points Regime

Vered Shapovalov, Z. Landsman, U. Makov
{"title":"A LC Model With Change-Points Regime","authors":"Vered Shapovalov, Z. Landsman, U. Makov","doi":"10.2139/ssrn.3319712","DOIUrl":null,"url":null,"abstract":"This paper extends the widely used Lee Carter (LC) model (Lee & Carter, 1992) for mortality projection. We suggest a Bayesian change-points model for the time parameters in the Bayesian extension of the LC model suggested in Czado et al. (2005). In particular, we modify the simple linear trend to a piecewise linear trend. This model accounts for changes in trend over time and it is inspired by the Bayesian random level{shift model of McCulloch & Tsay (1993). In a validation-based examination, the proposed change-points model produces smaller prediction errors compared to the autoregressive model for the time parameters in Czado et al. (2005). Notably, this is true for all populations considered.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3319712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper extends the widely used Lee Carter (LC) model (Lee & Carter, 1992) for mortality projection. We suggest a Bayesian change-points model for the time parameters in the Bayesian extension of the LC model suggested in Czado et al. (2005). In particular, we modify the simple linear trend to a piecewise linear trend. This model accounts for changes in trend over time and it is inspired by the Bayesian random level{shift model of McCulloch & Tsay (1993). In a validation-based examination, the proposed change-points model produces smaller prediction errors compared to the autoregressive model for the time parameters in Czado et al. (2005). Notably, this is true for all populations considered.
具有变点状态的LC模型
本文扩展了广泛使用的Lee Carter (LC)模型(Lee &Carter, 1992)用于死亡率预测。在Czado等人(2005)提出的LC模型的贝叶斯扩展中,我们建议使用贝叶斯变点模型来表示时间参数。特别地,我们将简单的线性趋势修改为分段线性趋势。该模型解释了随时间变化的趋势,其灵感来自于麦卡洛克的贝叶斯随机水平偏移模型。-蔡(1993)。在基于验证的检验中,与Czado等人(2005)的自回归模型相比,所提出的变化点模型对时间参数的预测误差更小。值得注意的是,这对所有被考虑的人群都是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信