Music Genres Classification using Text Categorization Method

Kai Chen, Sheng Gao, Yongwei Zhu, Qibin Sun
{"title":"Music Genres Classification using Text Categorization Method","authors":"Kai Chen, Sheng Gao, Yongwei Zhu, Qibin Sun","doi":"10.1109/MMSP.2006.285301","DOIUrl":null,"url":null,"abstract":"Automatic music genre classification is one of the most challenging problems in music information retrieval and management of digital music database. In this paper, we propose a new framework using text category methods to classify music genres. This framework is different from current methods for music genre classification. In our framework, we consider music as text-like semantic music document, which is represented by a set of music symbol lexicons with a HMM (hidden Markov models) cluster. Music symbols can be seemed as high-level features or semantic features like beats or rhythms. We use latent semantic indexing (LSI) technique that is widely adopted in text categorization for music genre classification. From the experimental results, we could achieve an average recall over 70% for ten musical genres","PeriodicalId":267577,"journal":{"name":"2006 IEEE Workshop on Multimedia Signal Processing","volume":"656 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2006.285301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Automatic music genre classification is one of the most challenging problems in music information retrieval and management of digital music database. In this paper, we propose a new framework using text category methods to classify music genres. This framework is different from current methods for music genre classification. In our framework, we consider music as text-like semantic music document, which is represented by a set of music symbol lexicons with a HMM (hidden Markov models) cluster. Music symbols can be seemed as high-level features or semantic features like beats or rhythms. We use latent semantic indexing (LSI) technique that is widely adopted in text categorization for music genre classification. From the experimental results, we could achieve an average recall over 70% for ten musical genres
基于文本分类方法的音乐类型分类
音乐体裁自动分类是音乐信息检索和数字音乐数据库管理中最具挑战性的问题之一。本文提出了一种使用文本分类方法对音乐类型进行分类的新框架。该框架不同于现有的音乐类型分类方法。在我们的框架中,我们将音乐视为类似文本的语义音乐文档,它由一组带有HMM(隐马尔可夫模型)聚类的音乐符号词汇表示。音乐符号可以被视为高级特征或语义特征,如节拍或节奏。我们使用在文本分类中广泛应用的潜在语义索引(LSI)技术对音乐类型进行分类。从实验结果来看,我们对10种音乐类型的平均召回率可以达到70%以上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信