General purpose representation and association machine part 2: Biological implications

Lei Wei
{"title":"General purpose representation and association machine part 2: Biological implications","authors":"Lei Wei","doi":"10.1109/SECON.2012.6196976","DOIUrl":null,"url":null,"abstract":"Using lessons learned from error control coding, and multiple areas of life science, we propose a general purpose representation and association machine (GPRAM). In this part of paper, we illustrate our methodology, four principles, and our understanding of intelligence. We then introduce hierarchical structure and reasons to be vagueness, overcompleteness, and deliberate variation. After that, we show possible features and how to explain some visual illusions. Lastly, we illustrate a possible vague computational architecture to perform quick and rough estimation for general purpose.","PeriodicalId":187091,"journal":{"name":"2012 Proceedings of IEEE Southeastcon","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of IEEE Southeastcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2012.6196976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Using lessons learned from error control coding, and multiple areas of life science, we propose a general purpose representation and association machine (GPRAM). In this part of paper, we illustrate our methodology, four principles, and our understanding of intelligence. We then introduce hierarchical structure and reasons to be vagueness, overcompleteness, and deliberate variation. After that, we show possible features and how to explain some visual illusions. Lastly, we illustrate a possible vague computational architecture to perform quick and rough estimation for general purpose.
通用表示和联想机。第2部分:生物学意义
利用错误控制编码和生命科学多个领域的经验教训,我们提出了一个通用的表示和关联机(GPRAM)。在本文的这一部分,我们阐述了我们的方法论,四个原则,以及我们对智力的理解。然后,我们介绍了层次结构和原因是模糊,过完备和故意变异。之后,我们展示了可能的特征以及如何解释一些视觉错觉。最后,我们举例说明了一种可能的模糊计算体系结构,以执行通用的快速和粗略的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信