{"title":"Metro Maps on Flexible Base Grids","authors":"H. Bast, P. Brosi, Sabine Storandt","doi":"10.1145/3469830.3470899","DOIUrl":null,"url":null,"abstract":"We present new generic methods to efficiently draw schematized metro maps for a wide variety of layouts, including octilinear, hexalinear, and orthoradial maps. The maps are drawn by mapping the input graph to a suitable grid graph. Previous work was restricted to regular octilinear grids. In this work, we investigate a variety of grids, including triangular grids and orthoradial grids. In particular, we also construct sparse grids where the local node density adapts to the input graph (e.g. octilinear Hanan grids, which we introduce in this work). For octilinear maps, this reduces the grid size by a factor of up to 5 compared to previous work, while still achieving close-to-optimal layouts. For many maps, this reduction also leads to up to 5 times faster solution times of the underlying optimization problem. We evaluate our approach on five maps. All octilinear maps can be computed in under 0.5 seconds, all hexalinear and orthoradial maps can be computed in under 2.5 seconds.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We present new generic methods to efficiently draw schematized metro maps for a wide variety of layouts, including octilinear, hexalinear, and orthoradial maps. The maps are drawn by mapping the input graph to a suitable grid graph. Previous work was restricted to regular octilinear grids. In this work, we investigate a variety of grids, including triangular grids and orthoradial grids. In particular, we also construct sparse grids where the local node density adapts to the input graph (e.g. octilinear Hanan grids, which we introduce in this work). For octilinear maps, this reduces the grid size by a factor of up to 5 compared to previous work, while still achieving close-to-optimal layouts. For many maps, this reduction also leads to up to 5 times faster solution times of the underlying optimization problem. We evaluate our approach on five maps. All octilinear maps can be computed in under 0.5 seconds, all hexalinear and orthoradial maps can be computed in under 2.5 seconds.