Learning Multi-Objective Network Optimizations

H. Lee, Sang Hyun Lee, Tony Q. S. Quek
{"title":"Learning Multi-Objective Network Optimizations","authors":"H. Lee, Sang Hyun Lee, Tony Q. S. Quek","doi":"10.1109/iccworkshops53468.2022.9814461","DOIUrl":null,"url":null,"abstract":"This paper studies a deep learning approach for multi-objective network optimizations. Heterogeneous performance measures are maximized simultaneously to identify complete Pareto-optimal tradeoffs. To this end, a multi-objective optimization (MOO) problem is first reformulated as a collection of constrained single objective optimization (SOO) problems, each associated with a Pareto-optimal point. A novel MOO learning mechanism is developed to address multiple instances of such SOO problems concurrently. A constrained optimization technique is parameterized with neural networks to find an individual solution of the Pareto boundary points. The developed scheme proves efficient in characterizing the optimal tradeoffs of conflicting performance metrics in interfering networks.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccworkshops53468.2022.9814461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies a deep learning approach for multi-objective network optimizations. Heterogeneous performance measures are maximized simultaneously to identify complete Pareto-optimal tradeoffs. To this end, a multi-objective optimization (MOO) problem is first reformulated as a collection of constrained single objective optimization (SOO) problems, each associated with a Pareto-optimal point. A novel MOO learning mechanism is developed to address multiple instances of such SOO problems concurrently. A constrained optimization technique is parameterized with neural networks to find an individual solution of the Pareto boundary points. The developed scheme proves efficient in characterizing the optimal tradeoffs of conflicting performance metrics in interfering networks.
学习多目标网络优化
研究了一种用于多目标网络优化的深度学习方法。异构性能度量同时最大化,以确定完整的帕累托最优权衡。为此,首先将多目标优化(MOO)问题重新表述为约束单目标优化(SOO)问题的集合,每个问题与一个帕累托最优点相关联。开发了一种新的mooo学习机制来同时解决此类SOO问题的多个实例。利用神经网络参数化约束优化技术,求出Pareto边界点的单个解。所开发的方案在描述干扰网络中相互冲突的性能指标的最优权衡方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信