A Study of Crack Growth in Sandwich Composite Beams

S. El-Sayed, S. Sridharan
{"title":"A Study of Crack Growth in Sandwich Composite Beams","authors":"S. El-Sayed, S. Sridharan","doi":"10.1115/imece2001/ad-25311","DOIUrl":null,"url":null,"abstract":"\n The paper proposes models to track the face-core interfacial delamination growth and crack kinking into the sandwich core, respectively. The models consist in interposing a cohesive layer along a pre-existing delamination or an identified plane of crack propagation. The former, designated as CLD (cohesive layer delamination model) is investigated first in detail using an example of a restrained beam specimen. The Influence of the key parameters of the model, viz. the thickness of the cohesive layer and the strength and stiffness of the cohesive layer material, have been studied. It is found that the model is fairly robust and is not sensitive to changes in parameters other than the critical strain energy release rate. The second model is a highly simplified one, but it is nevertheless a comprehensive model which can track the crack path by identifying crack planes in various elements using a maximum tensile stress criterion. This is designated as CLDK model as it deal with delamination and crack kinking — whichever is the preferred mode of fracture. The models are constructed ensuring that the crack opening is controlled by the critical value of strain energy release rate in mode I fracture. Experimental results of two sandwich specimens, viz. bottom restrained beams with 0° and −10° tilt angle respectively were used for comparison. The results indicate that the both the models are able to capture the initiation and track the growth of the interfacial delamination. The CLDK model tracks the crack kinking into the core, and its subsequent return to the facesheet-core interface.","PeriodicalId":442756,"journal":{"name":"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/ad-25311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes models to track the face-core interfacial delamination growth and crack kinking into the sandwich core, respectively. The models consist in interposing a cohesive layer along a pre-existing delamination or an identified plane of crack propagation. The former, designated as CLD (cohesive layer delamination model) is investigated first in detail using an example of a restrained beam specimen. The Influence of the key parameters of the model, viz. the thickness of the cohesive layer and the strength and stiffness of the cohesive layer material, have been studied. It is found that the model is fairly robust and is not sensitive to changes in parameters other than the critical strain energy release rate. The second model is a highly simplified one, but it is nevertheless a comprehensive model which can track the crack path by identifying crack planes in various elements using a maximum tensile stress criterion. This is designated as CLDK model as it deal with delamination and crack kinking — whichever is the preferred mode of fracture. The models are constructed ensuring that the crack opening is controlled by the critical value of strain energy release rate in mode I fracture. Experimental results of two sandwich specimens, viz. bottom restrained beams with 0° and −10° tilt angle respectively were used for comparison. The results indicate that the both the models are able to capture the initiation and track the growth of the interfacial delamination. The CLDK model tracks the crack kinking into the core, and its subsequent return to the facesheet-core interface.
夹层复合材料梁裂纹扩展研究
本文分别提出了面核界面分层生长和夹层核裂纹扭结的模型。该模型包括沿预先存在的分层或已识别的裂纹扩展平面插入内聚层。本文首先以约束梁为例,详细研究了内聚层脱层模型。研究了黏结层厚度、黏结层材料强度和刚度对模型关键参数的影响。结果表明,该模型具有较强的鲁棒性,对除临界应变能释放率外的其他参数变化不敏感。第二个模型是一个高度简化的模型,但它仍然是一个全面的模型,可以通过使用最大拉应力准则识别各个单元的裂纹面来跟踪裂纹路径。这被指定为CLDK模型,因为它处理分层和裂纹扭结-无论哪种是首选的断裂模式。建立了以I型断裂的应变能释放率临界值控制裂纹张开的模型。采用倾角分别为0°和- 10°的底部约束梁两种夹层试件的试验结果进行对比。结果表明,这两种模型都能捕捉界面分层的起始和生长过程。CLDK模型跟踪进入内核的裂纹,并随后返回到facesheet-core界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信