Association Rule Mining Based HotSpot Analysis on SEER Lung Cancer Data

Ankit Agrawal, A. Choudhary
{"title":"Association Rule Mining Based HotSpot Analysis on SEER Lung Cancer Data","authors":"Ankit Agrawal, A. Choudhary","doi":"10.4018/jkdb.2011040103","DOIUrl":null,"url":null,"abstract":"The authors analyze the lung cancer data available from the SEER program with the aim of identifying hotspots using association rule mining techniques. A subset of 13 patient attributes from the SEER data were recently linked with the survival outcome using prediction models, which is used in this study for segmentation. The goal here is to identify characteristics of patient segments where average survival is significantly higher/lower than average survival across the entire dataset. Automated association rule mining techniques resulted in hundreds of rules, from which many redundant rules were manually removed based on domain knowledge. Further, association rule mining based hotspot analysis was also conducted for conditional survival patient data, i.e., in cases where patients have already survived for a year after diagnosis. The resulting rules conform with existing biomedical knowledge and provide interesting insights into lung cancer survival.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2011040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The authors analyze the lung cancer data available from the SEER program with the aim of identifying hotspots using association rule mining techniques. A subset of 13 patient attributes from the SEER data were recently linked with the survival outcome using prediction models, which is used in this study for segmentation. The goal here is to identify characteristics of patient segments where average survival is significantly higher/lower than average survival across the entire dataset. Automated association rule mining techniques resulted in hundreds of rules, from which many redundant rules were manually removed based on domain knowledge. Further, association rule mining based hotspot analysis was also conducted for conditional survival patient data, i.e., in cases where patients have already survived for a year after diagnosis. The resulting rules conform with existing biomedical knowledge and provide interesting insights into lung cancer survival.
基于关联规则挖掘的SEER肺癌数据热点分析
作者分析了SEER项目提供的肺癌数据,目的是使用关联规则挖掘技术识别热点。来自SEER数据的13个患者属性子集最近使用预测模型与生存结果相关联,该模型在本研究中用于分割。这里的目标是确定平均生存期明显高于/低于整个数据集平均生存期的患者群体特征。自动化关联规则挖掘技术产生了数百条规则,其中许多冗余规则是基于领域知识手动删除的。此外,还对有条件生存患者数据(即患者在诊断后已经存活一年的病例)进行了基于关联规则挖掘的热点分析。由此产生的规则符合现有的生物医学知识,并为肺癌生存提供了有趣的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信