A new outlier detection algorithm and its application in intelligent transportation system

Gao Lin, Liu Xin, Han Feng, Liu Ying
{"title":"A new outlier detection algorithm and its application in intelligent transportation system","authors":"Gao Lin, Liu Xin, Han Feng, Liu Ying","doi":"10.1109/ITAIC.2014.7065088","DOIUrl":null,"url":null,"abstract":"Outlier detection plays an important role for data analysis in data mining. Aiming at outlier characters of Intelligent Transportation System (ITS) such as few samples, high frequency and large range, a new outlier detection algorithm based on probability theory and fuzzy clustering method (FCM) is proposed. Firstly, the new algorithm judges data variation, and then clusters data using FCM. Finally, the outlier detection result is given through estimating clustering result using probability theory. Detection of practical travel time verifies validity and practicability of the new algorithm.","PeriodicalId":111584,"journal":{"name":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAIC.2014.7065088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Outlier detection plays an important role for data analysis in data mining. Aiming at outlier characters of Intelligent Transportation System (ITS) such as few samples, high frequency and large range, a new outlier detection algorithm based on probability theory and fuzzy clustering method (FCM) is proposed. Firstly, the new algorithm judges data variation, and then clusters data using FCM. Finally, the outlier detection result is given through estimating clustering result using probability theory. Detection of practical travel time verifies validity and practicability of the new algorithm.
一种新的离群点检测算法及其在智能交通系统中的应用
在数据挖掘中,离群点检测在数据分析中起着重要的作用。针对智能交通系统中离群点样本少、频率高、范围大的特点,提出了一种基于概率论和模糊聚类方法的离群点检测算法。该算法首先对数据的变化进行判断,然后利用FCM聚类数据。最后利用概率论对聚类结果进行估计,给出离群点检测结果。实际旅行时间的检测验证了新算法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信