Multi-channel EEG signal segmentation and feature extraction

A. Procházka, M. Mudrová, O. Vysata, Robert Háva, Carmen Paz Suárez Araujo
{"title":"Multi-channel EEG signal segmentation and feature extraction","authors":"A. Procházka, M. Mudrová, O. Vysata, Robert Háva, Carmen Paz Suárez Araujo","doi":"10.1109/INES.2010.5483824","DOIUrl":null,"url":null,"abstract":"Signal analysis of multi-channel data form a specific area of general digital signal processing methods. The paper is devoted to application of these methods for electroencephalogram (EEG) signal processing including signal de-noising, evaluation of its principal components and segmentation based upon feature detection both by the discrete wavelet transform (DWT) and discrete Fourier transform (DFT). The self-organizing neural networks are then used for pattern vectors classification using a specific statistical criterion proposed to evaluate distances of individual feature vector values from corresponding cluster centers. Results achieved are compared for different data sets and selected mathematical methods to detect and to classify signal segments features. Proposed methods are accompanied by the appropriate graphical user interface (GUI) designed in the MATLAB environment.","PeriodicalId":118326,"journal":{"name":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2010.5483824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Signal analysis of multi-channel data form a specific area of general digital signal processing methods. The paper is devoted to application of these methods for electroencephalogram (EEG) signal processing including signal de-noising, evaluation of its principal components and segmentation based upon feature detection both by the discrete wavelet transform (DWT) and discrete Fourier transform (DFT). The self-organizing neural networks are then used for pattern vectors classification using a specific statistical criterion proposed to evaluate distances of individual feature vector values from corresponding cluster centers. Results achieved are compared for different data sets and selected mathematical methods to detect and to classify signal segments features. Proposed methods are accompanied by the appropriate graphical user interface (GUI) designed in the MATLAB environment.
多通道脑电信号分割与特征提取
信号分析是多通道数据形成的特定领域的一般数字信号处理方法。本文研究了离散小波变换(DWT)和离散傅立叶变换(DFT)在脑电图信号处理中的应用,包括信号去噪、主成分评估和基于特征检测的分割。然后将自组织神经网络用于模式向量分类,使用提出的特定统计准则来评估各个特征向量值与相应聚类中心的距离。比较了不同数据集和选择的数学方法来检测和分类信号段特征的结果。在MATLAB环境下设计了相应的图形用户界面(GUI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信