Approximation of Dispatching Rules in Manufacturing Control Using Artificial Neural Networks

S. Bergmann, Sören Stelzer
{"title":"Approximation of Dispatching Rules in Manufacturing Control Using Artificial Neural Networks","authors":"S. Bergmann, Sören Stelzer","doi":"10.1109/PADS.2011.5936774","DOIUrl":null,"url":null,"abstract":"Automatic generation of simulation models has been a recurring topic in scientific papers for years. A common problem of all known model generation approaches is the generation of dynamic behavior, e.g. buffering or control strategies. This paper introduces a novel methodology for generation of dynamic behavior, based on artificial neural networks, which is usable directly in the simulation. We also test the approach in a manageable scenario; all results are illustrated via small simulation experiments.","PeriodicalId":330788,"journal":{"name":"2011 IEEE Workshop on Principles of Advanced and Distributed Simulation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Principles of Advanced and Distributed Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADS.2011.5936774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Automatic generation of simulation models has been a recurring topic in scientific papers for years. A common problem of all known model generation approaches is the generation of dynamic behavior, e.g. buffering or control strategies. This paper introduces a novel methodology for generation of dynamic behavior, based on artificial neural networks, which is usable directly in the simulation. We also test the approach in a manageable scenario; all results are illustrated via small simulation experiments.
基于人工神经网络的制造控制调度规则逼近
多年来,仿真模型的自动生成一直是科学论文中反复出现的话题。所有已知模型生成方法的一个共同问题是动态行为的生成,例如缓冲或控制策略。本文介绍了一种新的基于人工神经网络的动态行为生成方法,该方法可直接用于仿真。我们还在一个可管理的场景中测试该方法;所有结果都通过小型模拟实验加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信