The Research of the Accessibility and Transitivity of Topological Group

Ji Zhan-jiang, Shi Wei
{"title":"The Research of the Accessibility and Transitivity of Topological Group","authors":"Ji Zhan-jiang, Shi Wei","doi":"10.1109/ICVRIS51417.2020.00280","DOIUrl":null,"url":null,"abstract":"The accessibility and transitivity have an important significance in terms of theory and application. The concept of the accessibility and transitivity are introduced in this paper. We study their dynamical properties. The following result are obtained: (l)Let (K , G ) be the hyperspace of (X , G ). Then ( X , G ) is accessible if and only if (K , G ) is accessible; (2) Let (K , G) be the hyperspace of (X , G). Then (X , G ) is transitive if and only if (K , G ) is transitive. These results enriched the theory of the accessibility and transitivity of topological group.","PeriodicalId":162549,"journal":{"name":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS51417.2020.00280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accessibility and transitivity have an important significance in terms of theory and application. The concept of the accessibility and transitivity are introduced in this paper. We study their dynamical properties. The following result are obtained: (l)Let (K , G ) be the hyperspace of (X , G ). Then ( X , G ) is accessible if and only if (K , G ) is accessible; (2) Let (K , G) be the hyperspace of (X , G). Then (X , G ) is transitive if and only if (K , G ) is transitive. These results enriched the theory of the accessibility and transitivity of topological group.
拓扑群的可及性与传递性研究
可及性和及物性具有重要的理论和应用意义。本文介绍了可及性和及物性的概念。我们研究了它们的动力学性质。(1)设(K, G)为(X, G)的超空间。则(X, G)当且仅当(K, G)可达;(2)设(K, G)是(X, G)的超空间,则(X, G)是可传递的当且仅当(K, G)是可传递的。这些结果丰富了拓扑群的可及性和传递性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信