L. Arleo, Jasmine Pozzi, Niccolò Pagliarani, M. Cianchetti
{"title":"Sea Shell Bioinspired Variable Stiffness Mechanism Enabled by Hybrid Jamming Transition","authors":"L. Arleo, Jasmine Pozzi, Niccolò Pagliarani, M. Cianchetti","doi":"10.1109/RoboSoft55895.2023.10121930","DOIUrl":null,"url":null,"abstract":"Layer jamming and positive pressure jamming demonstrated great potential in soft robotic applications. The combination of these technologies can increase the performance of variable stiffness-oriented designs. Inspired by the shape of sea shell radial ribs, we introduce a planar lightweight device that can be easily adapted to different application scenarios, providing both significant stiffness variation and high load-bearing capabilities. Exploiting the ease of the system in terms of design and manufacturing, we tested the device with a different number of layers. It shows higher performances than standard layer jamming systems: in particular, the 1 layer per side version (7.5g) shows a variable stiffness ratio of 64:1 and a force required to reach a 10 mm deflection equal to 19N. The same values for the 5 layers per side version (17.2g) are 42.5:1 and 62N. These values are in line with the most promising innovative approaches reported in the literature on layer jamming. In addition, the presented results allow making a comparison between the introduced device and the biological counterpart in terms of performance, showing the validity of sea shells as a bioinspiration source for variable stiffness systems.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10121930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Layer jamming and positive pressure jamming demonstrated great potential in soft robotic applications. The combination of these technologies can increase the performance of variable stiffness-oriented designs. Inspired by the shape of sea shell radial ribs, we introduce a planar lightweight device that can be easily adapted to different application scenarios, providing both significant stiffness variation and high load-bearing capabilities. Exploiting the ease of the system in terms of design and manufacturing, we tested the device with a different number of layers. It shows higher performances than standard layer jamming systems: in particular, the 1 layer per side version (7.5g) shows a variable stiffness ratio of 64:1 and a force required to reach a 10 mm deflection equal to 19N. The same values for the 5 layers per side version (17.2g) are 42.5:1 and 62N. These values are in line with the most promising innovative approaches reported in the literature on layer jamming. In addition, the presented results allow making a comparison between the introduced device and the biological counterpart in terms of performance, showing the validity of sea shells as a bioinspiration source for variable stiffness systems.