Image Generation Using Different Models Of Generative Adversarial Network

Ahmad Al-qerem, Yasmeen Shaher Alsalman, Khalid Mansour
{"title":"Image Generation Using Different Models Of Generative Adversarial Network","authors":"Ahmad Al-qerem, Yasmeen Shaher Alsalman, Khalid Mansour","doi":"10.1109/ACIT47987.2019.8991120","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GANs) can be used in modeling highly complex distributions for real world data, especially images. This paper compares between two different models of the Generative Adversarial Networks: the Multi-Agent Diverse Generative Adversarial Networks (MAD-GAN) which consists of multi-generator and one discriminator and the Generative Multi-Adversarial Networks (GMAN) that has multiple discriminators and one generator. The results show that both MAD-GAN and GMAN outperformed the DCGAN. In addition, MAD-GAN performs better than GMAN when avoiding mode collapse or when the dataset contains many different modes.","PeriodicalId":314091,"journal":{"name":"2019 International Arab Conference on Information Technology (ACIT)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT47987.2019.8991120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative adversarial networks (GANs) can be used in modeling highly complex distributions for real world data, especially images. This paper compares between two different models of the Generative Adversarial Networks: the Multi-Agent Diverse Generative Adversarial Networks (MAD-GAN) which consists of multi-generator and one discriminator and the Generative Multi-Adversarial Networks (GMAN) that has multiple discriminators and one generator. The results show that both MAD-GAN and GMAN outperformed the DCGAN. In addition, MAD-GAN performs better than GMAN when avoiding mode collapse or when the dataset contains many different modes.
生成对抗网络中不同模型的图像生成
生成对抗网络(GANs)可用于对真实世界数据,特别是图像的高度复杂分布进行建模。本文比较了两种不同的生成式对抗网络模型:由多个生成器和一个鉴别器组成的多智能体多样化生成式对抗网络(MAD-GAN)和由多个鉴别器和一个生成器组成的生成式多对抗网络(GMAN)。结果表明,MAD-GAN和GMAN都优于DCGAN。此外,当避免模式崩溃或当数据集包含许多不同的模式时,MAD-GAN比GMAN表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信