Ahmad Al-qerem, Yasmeen Shaher Alsalman, Khalid Mansour
{"title":"Image Generation Using Different Models Of Generative Adversarial Network","authors":"Ahmad Al-qerem, Yasmeen Shaher Alsalman, Khalid Mansour","doi":"10.1109/ACIT47987.2019.8991120","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GANs) can be used in modeling highly complex distributions for real world data, especially images. This paper compares between two different models of the Generative Adversarial Networks: the Multi-Agent Diverse Generative Adversarial Networks (MAD-GAN) which consists of multi-generator and one discriminator and the Generative Multi-Adversarial Networks (GMAN) that has multiple discriminators and one generator. The results show that both MAD-GAN and GMAN outperformed the DCGAN. In addition, MAD-GAN performs better than GMAN when avoiding mode collapse or when the dataset contains many different modes.","PeriodicalId":314091,"journal":{"name":"2019 International Arab Conference on Information Technology (ACIT)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT47987.2019.8991120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Generative adversarial networks (GANs) can be used in modeling highly complex distributions for real world data, especially images. This paper compares between two different models of the Generative Adversarial Networks: the Multi-Agent Diverse Generative Adversarial Networks (MAD-GAN) which consists of multi-generator and one discriminator and the Generative Multi-Adversarial Networks (GMAN) that has multiple discriminators and one generator. The results show that both MAD-GAN and GMAN outperformed the DCGAN. In addition, MAD-GAN performs better than GMAN when avoiding mode collapse or when the dataset contains many different modes.