Malliga Subramanian, Sathishkumar V E, C. Ramya, S. V. Kogilavani, Deepti Ravi
{"title":"A Lightweight Depthwise Separable Convolution Neural Network for Screening Covid-19 Infection from Chest CT and X-ray Images","authors":"Malliga Subramanian, Sathishkumar V E, C. Ramya, S. V. Kogilavani, Deepti Ravi","doi":"10.1109/DCOSS54816.2022.00072","DOIUrl":null,"url":null,"abstract":"Because Covid-19 spreads swiftly in the community, an automatic detection system is required to prevent Covid-19 from spreading among humans as a rapid diagnostic tool. In this paper, we propose to employ Convolution Neural Networks to detect coronavirus-infected patients using Computed Tomography and X-ray images. In addition, we look into the transfer learning of a deep CNN model, DenseNet201 for detecting infection from CT and X-ray scans. Grid Search optimization is utilized to select ideal values for hyper-parameters, while image augmentation is employed to increase the model’s capacity to generalize. We further modify DenseNet architecture to incorporate a depthwise separable convolution for detecting coronavirus-infected patients utilizing CT and X-ray images. Interestingly, all of the proposed models scored greater than 94% accuracy, which is equivalent to or higher than the accuracy of earlier deep learning models. Further, we demonstrate that depthwise separable convolution reduces the training time and computation complexity.","PeriodicalId":300416,"journal":{"name":"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS54816.2022.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Because Covid-19 spreads swiftly in the community, an automatic detection system is required to prevent Covid-19 from spreading among humans as a rapid diagnostic tool. In this paper, we propose to employ Convolution Neural Networks to detect coronavirus-infected patients using Computed Tomography and X-ray images. In addition, we look into the transfer learning of a deep CNN model, DenseNet201 for detecting infection from CT and X-ray scans. Grid Search optimization is utilized to select ideal values for hyper-parameters, while image augmentation is employed to increase the model’s capacity to generalize. We further modify DenseNet architecture to incorporate a depthwise separable convolution for detecting coronavirus-infected patients utilizing CT and X-ray images. Interestingly, all of the proposed models scored greater than 94% accuracy, which is equivalent to or higher than the accuracy of earlier deep learning models. Further, we demonstrate that depthwise separable convolution reduces the training time and computation complexity.