Parameter estimation of superimposed sinusoids by data matrix subfactorization: Theory and algorithm

A. S. Moutchkaev, S. Kong, A. L’vov
{"title":"Parameter estimation of superimposed sinusoids by data matrix subfactorization: Theory and algorithm","authors":"A. S. Moutchkaev, S. Kong, A. L’vov","doi":"10.1109/APEDE.2016.7879042","DOIUrl":null,"url":null,"abstract":"Estimating parameters of a sum of complex exponentials in white noise is considered in this paper. A simplified maximum likelihood estimation algorithm based on subfactorization of a structured data matrix is proposed, and we show that parameterization of the data model in signal space allows to improve estimation accuracy at low signal-to noise ratio (SNR). The idea of solution of the normal equations is based on the singular value decomposition method of the data matrix, which allows one to simplify drastically the obtained equations. The geometric sence of the proposed solution is discussed.","PeriodicalId":231207,"journal":{"name":"2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEDE.2016.7879042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Estimating parameters of a sum of complex exponentials in white noise is considered in this paper. A simplified maximum likelihood estimation algorithm based on subfactorization of a structured data matrix is proposed, and we show that parameterization of the data model in signal space allows to improve estimation accuracy at low signal-to noise ratio (SNR). The idea of solution of the normal equations is based on the singular value decomposition method of the data matrix, which allows one to simplify drastically the obtained equations. The geometric sence of the proposed solution is discussed.
用数据矩阵分解法估计叠加正弦波的参数:理论与算法
研究了白噪声条件下复指数和的参数估计问题。提出了一种基于结构化数据矩阵子分解的简化最大似然估计算法,并证明了信号空间中数据模型的参数化可以提高低信噪比下的估计精度。常规方程的解的思想是基于数据矩阵的奇异值分解方法,这使得人们可以大大简化得到的方程。讨论了所提解的几何意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信